High performance and energy efficient sobel edge detection

计算机科学 索贝尔算子 内部函数 能源消耗 图像处理 软件 现场可编程门阵列 边缘检测 嵌入式系统 计算机硬件 实时计算 算法 并行计算 图像(数学) 人工智能 操作系统 生态学 生物
作者
Thaufig Peng-o,Panyayot Chaikan
出处
期刊:Microprocessors and Microsystems [Elsevier]
卷期号:87: 104368-104368 被引量:10
标识
DOI:10.1016/j.micpro.2021.104368
摘要

Sobel edge detection is widely used in computer vision and image processing but its processing time becomes a serious problem in real-time environments, especially when an image is very large. Instead of utilizing a hardware-accelerated approach, we propose a purely software-based method which is simpler and cheaper. Our algorithm reduces the number of arithmetic operations and data loads, so that processing speed is increased and energy consumption reduced. The processing time is further reduced by the use of AVX intrinsics and OpenMP directives which distribute the workload among the AVX engines in a multi-core architecture. Our algorithm reduces the number of arithmetic operations by 22.73% compared to that of the state-of-the-art Sobel (SOAS) algorithm, while the number of data loads are reduced by 43.75% compared to SOAS. Performance and energy consumption comparisons between our algorithm and SOAS, as well as with the Sobel functions offered by the OpenCV and IPP libraries are investigated, and the results demonstrate that a multi-core version of our algorithm, implemented by AVX intrinsics, is on average 3.20, 9.34, and 13.99 times faster than IPP, SOAS, and OpenCV respectively. Also, it consumes an average of 2.91, 8.43, and 11.21 times less energy than IPP, SOAS, and OpenCV. Our algorithm, utilizing software modifications alone, benefits from both shorter development time and reduced cost compared to hardware approaches relying on an FPGA, ASIC, or GPU, making it more suitable for resource-constrained environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由初夏发布了新的文献求助20
3秒前
3秒前
Aoren完成签到,获得积分10
4秒前
快快跑咯发布了新的文献求助10
6秒前
6秒前
Singularity应助巫马小霜采纳,获得20
7秒前
dww发布了新的文献求助10
7秒前
DE完成签到,获得积分20
9秒前
ghost发布了新的文献求助10
9秒前
852应助布洛芬采纳,获得10
9秒前
啦啦啦发布了新的文献求助10
12秒前
阿三完成签到 ,获得积分10
15秒前
wanci应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
泠泠泠萘应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
扶石完成签到,获得积分10
17秒前
17秒前
来都来了完成签到 ,获得积分10
17秒前
18秒前
CodeCraft应助Cwx2020采纳,获得10
19秒前
Orange应助啦啦啦采纳,获得10
21秒前
wangayting发布了新的文献求助30
21秒前
活力元龙完成签到 ,获得积分10
22秒前
22秒前
大力的飞莲完成签到,获得积分10
23秒前
dandelionshun发布了新的文献求助10
24秒前
脑洞疼应助甜甜采纳,获得10
24秒前
123完成签到,获得积分10
25秒前
彭超完成签到 ,获得积分10
25秒前
26秒前
27秒前
哈哈2022完成签到,获得积分10
27秒前
小巧的远望完成签到,获得积分10
28秒前
Aganlin完成签到 ,获得积分0
28秒前
abner发布了新的文献求助10
28秒前
houl完成签到,获得积分10
28秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023