亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Least squares Monte Carlo methods in stochastic Volterra rough volatility models

随机波动 蒙特卡罗方法 波动性(金融) 马尔科夫蒙特卡洛 SABR波动模型 混合蒙特卡罗 计量经济学 计算机科学 应用数学 数学 数学优化 统计
作者
Henrique Guerreiro,João Guerra
出处
期刊:Journal of Computational Finance [Infopro Digital]
被引量:1
标识
DOI:10.21314/jcf.2022.027
摘要

In stochastic Volterra rough volatility models, the volatility follows a truncated Brownian semistationary process with stochastic volatility of volatility (vol-of-vol). Recently, efficient Chicago Board Options Exchange Volatility Index (VIX) pricing Monte Carlo methods have been proposed for cases where the vol-of-vol is Markovian and independent of the volatility. Using recent empirical data, we discuss the VIX option pricing problem for a generalized framework of these models, where the vol-of-vol may depend on the volatility and/or may not be Markovian. In such a setting, the aforementioned Monte Carlo methods are not valid. Moreover, the classical least squares Monte Carlo faces exponentially increasing complexity with the number of grid time steps, while the nested Monte Carlo method requires a prohibitive number of simulations. By exploring the infinite-dimensional Markovian representation of these models, we devise a scalable least squares Monte Carlo for VIX option pricing. We apply our method first under the independence assumption for benchmarks and then to the generalized framework. We also discuss the rough vol-of-vol setting, where Markovianity of the vol-of-vol is not present. We present simulations and benchmarks to establish the efficiency of our method as well as a comparison with market data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助玉玉采纳,获得10
1秒前
chengshu666发布了新的文献求助10
6秒前
如意葶发布了新的文献求助10
6秒前
清风明月完成签到 ,获得积分10
8秒前
完美世界应助科研通管家采纳,获得10
17秒前
21秒前
卡卡发布了新的文献求助10
25秒前
溪灵发布了新的文献求助20
38秒前
啊啊啊完成签到 ,获得积分10
39秒前
46秒前
玉玉完成签到 ,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ttkx完成签到,获得积分10
1分钟前
1分钟前
杨光发布了新的文献求助10
1分钟前
江流儿完成签到 ,获得积分10
1分钟前
SciGPT应助杨光采纳,获得10
1分钟前
1分钟前
1分钟前
lcw1998完成签到 ,获得积分10
1分钟前
无限青槐发布了新的文献求助10
1分钟前
小蘑菇应助jinan采纳,获得10
1分钟前
溪灵完成签到,获得积分10
1分钟前
斯文败类应助shun采纳,获得10
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
fandan完成签到 ,获得积分10
2分钟前
Eileen完成签到 ,获得积分0
2分钟前
香菜张完成签到,获得积分10
2分钟前
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助morena采纳,获得10
2分钟前
寻道图强完成签到,获得积分0
2分钟前
圈哥完成签到,获得积分10
2分钟前
pegasus0802完成签到,获得积分10
2分钟前
Ava应助无限青槐采纳,获得10
2分钟前
忧郁的火车完成签到,获得积分10
3分钟前
朝朝暮夕完成签到 ,获得积分10
3分钟前
闪闪的晓丝完成签到 ,获得积分10
3分钟前
酷波er应助观澜采纳,获得10
3分钟前
zqq完成签到,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622199
求助须知:如何正确求助?哪些是违规求助? 4707132
关于积分的说明 14938831
捐赠科研通 4769058
什么是DOI,文献DOI怎么找? 2552198
邀请新用户注册赠送积分活动 1514325
关于科研通互助平台的介绍 1475038