Quantifying Meibomian Gland Morphology Using Artificial Intelligence

睑板腺 计算机科学 人工智能 形态学(生物学) 分割 对比度(视觉) 模式识别(心理学) 解剖 生物 医学 放射科 眼睑 遗传学
作者
Jiayun Wang,LI Shixuan,Thao N. Yeh,Rudrasis Chakraborty,Andrew D. Graham,Stella X. Yu,Meng C. Lin
出处
期刊:Optometry and Vision Science [Ovid Technologies (Wolters Kluwer)]
卷期号:98 (9): 1094-1103 被引量:10
标识
DOI:10.1097/opx.0000000000001767
摘要

Quantifying meibomian gland morphology from meibography images is used for the diagnosis, treatment, and management of meibomian gland dysfunction in clinics. A novel and automated method is described for quantifying meibomian gland morphology from meibography images.Meibomian gland morphological abnormality is a common clinical sign of meibomian gland dysfunction, yet there exist no automated methods that provide standard quantifications of morphological features for individual glands. This study introduces an automated artificial intelligence approach to segmenting individual meibomian gland regions in infrared meibography images and analyzing their morphological features.A total of 1443 meibography images were collected and annotated. The dataset was then divided into development and evaluation sets. The development set was used to train and tune deep learning models for segmenting glands and identifying ghost glands from images, whereas the evaluation set was used to evaluate the performance of the model. The gland segmentations were further used to analyze individual gland features, including gland local contrast, length, width, and tortuosity.A total of 1039 meibography images (including 486 upper and 553 lower eyelids) were used for training and tuning the deep learning model, whereas the remaining 404 images (including 203 upper and 201 lower eyelids) were used for evaluations. The algorithm on average achieved 63% mean intersection over union in segmenting glands, and 84.4% sensitivity and 71.7% specificity in identifying ghost glands. Morphological features of each gland were also fed to a support vector machine for analyzing their associations with ghost glands. Analysis of model coefficients indicated that low gland local contrast was the primary indicator for ghost glands.The proposed approach can automatically segment individual meibomian glands in infrared meibography images, identify ghost glands, and quantitatively analyze gland morphological features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白衣完成签到,获得积分20
1秒前
静_静完成签到 ,获得积分10
2秒前
NexusExplorer应助发嗲的慕蕊采纳,获得10
3秒前
zoulanfunny04给zoulanfunny04的求助进行了留言
3秒前
论文顺利完成签到,获得积分10
3秒前
小小圆应助zzz采纳,获得10
3秒前
由富完成签到,获得积分10
3秒前
宋可乐完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI6应助贰什柒采纳,获得10
6秒前
六月残雪完成签到 ,获得积分10
6秒前
6秒前
espresso发布了新的文献求助10
6秒前
Jasper应助Jerry采纳,获得10
6秒前
8秒前
8秒前
8秒前
cs完成签到 ,获得积分10
8秒前
caiqinghua888888完成签到,获得积分10
9秒前
动听初珍发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
淡淡从安完成签到 ,获得积分10
10秒前
11秒前
espresso完成签到,获得积分10
11秒前
yunnn发布了新的文献求助10
12秒前
yangfeidong发布了新的文献求助10
12秒前
陈瞿硕发布了新的文献求助20
12秒前
JamesPei应助Balance Man采纳,获得10
12秒前
13秒前
Aike发布了新的文献求助10
13秒前
13秒前
14秒前
dd发布了新的文献求助10
14秒前
15秒前
HHZ发布了新的文献求助10
15秒前
HHZ发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756