Quantifying Meibomian Gland Morphology Using Artificial Intelligence

睑板腺 计算机科学 人工智能 形态学(生物学) 分割 对比度(视觉) 模式识别(心理学) 解剖 生物 医学 放射科 眼睑 遗传学
作者
Jiayun Wang,LI Shixuan,Thao N. Yeh,Rudrasis Chakraborty,Andrew D. Graham,Stella X. Yu,Meng C. Lin
出处
期刊:Optometry and Vision Science [Lippincott Williams & Wilkins]
卷期号:98 (9): 1094-1103 被引量:10
标识
DOI:10.1097/opx.0000000000001767
摘要

Quantifying meibomian gland morphology from meibography images is used for the diagnosis, treatment, and management of meibomian gland dysfunction in clinics. A novel and automated method is described for quantifying meibomian gland morphology from meibography images.Meibomian gland morphological abnormality is a common clinical sign of meibomian gland dysfunction, yet there exist no automated methods that provide standard quantifications of morphological features for individual glands. This study introduces an automated artificial intelligence approach to segmenting individual meibomian gland regions in infrared meibography images and analyzing their morphological features.A total of 1443 meibography images were collected and annotated. The dataset was then divided into development and evaluation sets. The development set was used to train and tune deep learning models for segmenting glands and identifying ghost glands from images, whereas the evaluation set was used to evaluate the performance of the model. The gland segmentations were further used to analyze individual gland features, including gland local contrast, length, width, and tortuosity.A total of 1039 meibography images (including 486 upper and 553 lower eyelids) were used for training and tuning the deep learning model, whereas the remaining 404 images (including 203 upper and 201 lower eyelids) were used for evaluations. The algorithm on average achieved 63% mean intersection over union in segmenting glands, and 84.4% sensitivity and 71.7% specificity in identifying ghost glands. Morphological features of each gland were also fed to a support vector machine for analyzing their associations with ghost glands. Analysis of model coefficients indicated that low gland local contrast was the primary indicator for ghost glands.The proposed approach can automatically segment individual meibomian glands in infrared meibography images, identify ghost glands, and quantitatively analyze gland morphological features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elif发布了新的文献求助10
刚刚
刚刚
1秒前
风中的嚣发布了新的文献求助10
1秒前
Maestro_S应助紧张的惜梦采纳,获得20
1秒前
ray完成签到,获得积分20
2秒前
zh发布了新的文献求助10
2秒前
wlg发布了新的文献求助10
2秒前
3秒前
火火发布了新的文献求助10
3秒前
笨笨乘风发布了新的文献求助10
4秒前
4秒前
4秒前
思源应助幸福广山采纳,获得10
5秒前
cecilycen完成签到,获得积分10
6秒前
7秒前
ZNan发布了新的文献求助10
7秒前
科研通AI2S应助wlg采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
田様应助小giao吃不饱采纳,获得10
8秒前
木木发布了新的文献求助10
8秒前
lt发布了新的文献求助10
8秒前
8秒前
完美世界应助火火采纳,获得10
9秒前
小二郎应助肖战战采纳,获得10
10秒前
阿飘应助子乔采纳,获得10
10秒前
隐形曼青应助瘦瘦机器猫采纳,获得10
10秒前
李爱国应助zh采纳,获得10
10秒前
天真的雨发布了新的文献求助20
11秒前
11秒前
11秒前
隐形曼青应助ZNan采纳,获得10
11秒前
12秒前
12秒前
幽默人生完成签到,获得积分10
13秒前
猪猪hero发布了新的文献求助30
13秒前
14秒前
fuxixixi发布了新的文献求助10
14秒前
淘宝叮咚发布了新的文献求助10
14秒前
淘宝叮咚发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589872
求助须知:如何正确求助?哪些是违规求助? 4004895
关于积分的说明 12399651
捐赠科研通 3681863
什么是DOI,文献DOI怎么找? 2029343
邀请新用户注册赠送积分活动 1062883
科研通“疑难数据库(出版商)”最低求助积分说明 948536