Quantifying Meibomian Gland Morphology Using Artificial Intelligence

睑板腺 计算机科学 人工智能 形态学(生物学) 分割 对比度(视觉) 模式识别(心理学) 解剖 生物 医学 放射科 眼睑 遗传学
作者
Jiayun Wang,LI Shixuan,Thao N. Yeh,Rudrasis Chakraborty,Andrew D. Graham,Stella X. Yu,Meng C. Lin
出处
期刊:Optometry and Vision Science [Ovid Technologies (Wolters Kluwer)]
卷期号:98 (9): 1094-1103 被引量:10
标识
DOI:10.1097/opx.0000000000001767
摘要

Quantifying meibomian gland morphology from meibography images is used for the diagnosis, treatment, and management of meibomian gland dysfunction in clinics. A novel and automated method is described for quantifying meibomian gland morphology from meibography images.Meibomian gland morphological abnormality is a common clinical sign of meibomian gland dysfunction, yet there exist no automated methods that provide standard quantifications of morphological features for individual glands. This study introduces an automated artificial intelligence approach to segmenting individual meibomian gland regions in infrared meibography images and analyzing their morphological features.A total of 1443 meibography images were collected and annotated. The dataset was then divided into development and evaluation sets. The development set was used to train and tune deep learning models for segmenting glands and identifying ghost glands from images, whereas the evaluation set was used to evaluate the performance of the model. The gland segmentations were further used to analyze individual gland features, including gland local contrast, length, width, and tortuosity.A total of 1039 meibography images (including 486 upper and 553 lower eyelids) were used for training and tuning the deep learning model, whereas the remaining 404 images (including 203 upper and 201 lower eyelids) were used for evaluations. The algorithm on average achieved 63% mean intersection over union in segmenting glands, and 84.4% sensitivity and 71.7% specificity in identifying ghost glands. Morphological features of each gland were also fed to a support vector machine for analyzing their associations with ghost glands. Analysis of model coefficients indicated that low gland local contrast was the primary indicator for ghost glands.The proposed approach can automatically segment individual meibomian glands in infrared meibography images, identify ghost glands, and quantitatively analyze gland morphological features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
刚刚
初衷未央完成签到,获得积分10
刚刚
藏识完成签到,获得积分10
1秒前
复杂雪一完成签到,获得积分10
1秒前
Haley发布了新的文献求助10
1秒前
Novell完成签到,获得积分10
1秒前
小六完成签到,获得积分10
2秒前
Youzi完成签到,获得积分10
2秒前
2秒前
Baekkk完成签到,获得积分10
2秒前
ding应助阿萨十大采纳,获得10
3秒前
酒温书生完成签到,获得积分20
3秒前
小荔枝完成签到,获得积分10
3秒前
4秒前
诸葛烤鸭完成签到,获得积分10
4秒前
QMCL完成签到,获得积分0
4秒前
浮游应助慢羊羊采纳,获得10
5秒前
Jelavender完成签到,获得积分10
6秒前
高兴的半仙完成签到,获得积分10
6秒前
顾矜应助张建采纳,获得10
6秒前
姚龙完成签到 ,获得积分10
7秒前
桌球有点蔡先生完成签到 ,获得积分10
7秒前
奋斗夏真完成签到,获得积分10
7秒前
慕青应助风趣的芝麻采纳,获得10
7秒前
gene发布了新的文献求助10
7秒前
wys2493发布了新的文献求助10
8秒前
高大的储发布了新的文献求助10
8秒前
9秒前
dubo666给dubo666的求助进行了留言
9秒前
10秒前
10秒前
11秒前
11秒前
狂野的筝完成签到 ,获得积分10
12秒前
12秒前
婷刘完成签到,获得积分10
13秒前
13秒前
负责紊完成签到,获得积分10
13秒前
磊磊猪完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326643
求助须知:如何正确求助?哪些是违规求助? 4466789
关于积分的说明 13898695
捐赠科研通 4359245
什么是DOI,文献DOI怎么找? 2394512
邀请新用户注册赠送积分活动 1388021
关于科研通互助平台的介绍 1358868