Quantifying Meibomian Gland Morphology Using Artificial Intelligence

睑板腺 计算机科学 人工智能 形态学(生物学) 分割 对比度(视觉) 模式识别(心理学) 解剖 生物 医学 放射科 眼睑 遗传学
作者
Jiayun Wang,LI Shixuan,Thao N. Yeh,Rudrasis Chakraborty,Andrew D. Graham,Stella X. Yu,Meng C. Lin
出处
期刊:Optometry and Vision Science [Lippincott Williams & Wilkins]
卷期号:98 (9): 1094-1103 被引量:10
标识
DOI:10.1097/opx.0000000000001767
摘要

Quantifying meibomian gland morphology from meibography images is used for the diagnosis, treatment, and management of meibomian gland dysfunction in clinics. A novel and automated method is described for quantifying meibomian gland morphology from meibography images.Meibomian gland morphological abnormality is a common clinical sign of meibomian gland dysfunction, yet there exist no automated methods that provide standard quantifications of morphological features for individual glands. This study introduces an automated artificial intelligence approach to segmenting individual meibomian gland regions in infrared meibography images and analyzing their morphological features.A total of 1443 meibography images were collected and annotated. The dataset was then divided into development and evaluation sets. The development set was used to train and tune deep learning models for segmenting glands and identifying ghost glands from images, whereas the evaluation set was used to evaluate the performance of the model. The gland segmentations were further used to analyze individual gland features, including gland local contrast, length, width, and tortuosity.A total of 1039 meibography images (including 486 upper and 553 lower eyelids) were used for training and tuning the deep learning model, whereas the remaining 404 images (including 203 upper and 201 lower eyelids) were used for evaluations. The algorithm on average achieved 63% mean intersection over union in segmenting glands, and 84.4% sensitivity and 71.7% specificity in identifying ghost glands. Morphological features of each gland were also fed to a support vector machine for analyzing their associations with ghost glands. Analysis of model coefficients indicated that low gland local contrast was the primary indicator for ghost glands.The proposed approach can automatically segment individual meibomian glands in infrared meibography images, identify ghost glands, and quantitatively analyze gland morphological features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十一发布了新的文献求助10
刚刚
huangqx发布了新的文献求助10
刚刚
huayi发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
蓉城发布了新的文献求助30
1秒前
华仔应助零零零零采纳,获得10
2秒前
3秒前
紫川应助科研通管家采纳,获得30
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
hsialy发布了新的文献求助10
3秒前
思源应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
ll应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
FashionBoy应助msygcz采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
咸鱼完成签到,获得积分20
5秒前
hqq发布了新的文献求助30
6秒前
6秒前
Dexter完成签到,获得积分10
6秒前
7秒前
7秒前
Freya完成签到,获得积分10
7秒前
8秒前
夏轩FromHard应助guff采纳,获得10
8秒前
现代的冰珍完成签到 ,获得积分10
8秒前
加油科研发布了新的文献求助10
8秒前
9秒前
墨菲特发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970048
求助须知:如何正确求助?哪些是违规求助? 3514739
关于积分的说明 11175783
捐赠科研通 3250115
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951