亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based image reconstruction for TOF PET with DIRECT data partitioning format

计算机科学 人工智能 迭代重建 深度学习 投影(关系代数) 计算机视觉 过程(计算) 模式识别(心理学) 算法 操作系统
作者
Tao Feng,Shulin Yao,Xi Chen,Yizhang Zhao,Ruimin Wang,Shina Wu,Can Li,Baixuan Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (16): 165007-165007 被引量:17
标识
DOI:10.1088/1361-6560/ac13fe
摘要

Conventional positron emission tomography (PET) image reconstruction is achieved by the statistical iterative method. Deep learning provides another opportunity for speeding up the image reconstruction process. However, conventional deep learning-based image reconstruction requires a fully connected network for learning the Radon transform. The use of fully connected networks greatly complicated the network and increased hardware cost. In this study, we proposed a novel deep learning-based image reconstruction method by utilizing the DIRECT data partitioning method. The U-net structure with only convolutional layers was used in our approach. Patch-based model training and testing were used to achieve 3D reconstructions within current hardware limitations. Time-of-flight (TOF)-histoimages were first generated from the listmode data to replace conventional sinograms. Different projection angles were used as different channels in the input. A total of 15 patient data were used in this study. For each patient, the dynamic whole-body scanning protocol was used to expand the training dataset and a total of 372 separate scans were included. The leave-one-patient-out validation method was used. Two separate studies were carried out. In the first study, the measured TOF-histoimages were directly used for model training and testing, to study the performance of the method in real-world applications. In the second study, TOF-histoimages were simulated from already reconstructed images to exclude the scatters, randoms, attenuation-activity mismatch effects. This study was used to evaluate the optimal performance when all other corrections are ideal. Volumes of interests were placed in the liver and lesion region to study image noise and lesion quantitations. The reconstructed images using the proposed deep learning method showed similar image quality when compared with the conventional expectation-maximization approach. A minimal difference was observed when the simulated TOF-histoimages were used as model input and testing, suggesting the deep learning model can indeed learn the reconstruction process. Some quantitative difference was observed when the measured TOF-histoimages were used. The two studies suggested that the major difference is caused by inaccurate corrections performed by the network itself, which indicated that physics-based corrections are still required for better quantitative performance. In conclusion, we have proposed a novel deep learning-based image reconstruction method for TOF PET. With the help of the DIRECT data partitioning method, no fully connected layers were used and 3D image reconstruction can be directly achieved within the limits of the current hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrele发布了新的文献求助10
21秒前
谦也静熵完成签到,获得积分10
1分钟前
通科研完成签到 ,获得积分10
1分钟前
3分钟前
andrele发布了新的文献求助10
3分钟前
陈媛发布了新的文献求助10
3分钟前
sasa发布了新的文献求助10
3分钟前
sasa完成签到,获得积分10
4分钟前
满地枫叶完成签到,获得积分20
5分钟前
joanna完成签到,获得积分10
5分钟前
满地枫叶发布了新的文献求助10
5分钟前
5分钟前
M先生完成签到,获得积分10
5分钟前
5分钟前
5分钟前
tlx发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
小圆圈发布了新的文献求助30
7分钟前
兴奋的宛亦完成签到,获得积分20
7分钟前
zhanglongfei发布了新的文献求助10
7分钟前
7分钟前
小圆圈发布了新的文献求助10
7分钟前
7分钟前
小圆圈发布了新的文献求助10
7分钟前
李健的小迷弟应助小圆圈采纳,获得10
8分钟前
8分钟前
冬瓜排骨养生汤完成签到,获得积分10
8分钟前
9分钟前
小圆圈发布了新的文献求助10
9分钟前
vantie完成签到 ,获得积分10
9分钟前
9分钟前
zhanglongfei完成签到,获得积分10
9分钟前
Luis发布了新的文献求助10
9分钟前
12分钟前
12分钟前
北陆玄枵发布了新的文献求助10
12分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757