APER: AdaPtive Evidence-driven Reasoning Network for machine reading comprehension with unanswerable questions

计算机科学 一致性(知识库) 任务(项目管理) 人工智能 理解力 自然语言处理 程序设计语言 经济 管理
作者
Wei Peng,Yue Hu,Jing Yu,Luxi Xing,Yuqiang Xie
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:229: 107364-107364 被引量:15
标识
DOI:10.1016/j.knosys.2021.107364
摘要

Machine Reading Comprehension with unanswerable questions requires that systems not only answer questions when possible, but also output an unanswerable prediction when there is no answer with the given passage. This task encourages systems for true language understanding instead of just selecting the span that seems most related to the question in the conventional extractive reading comprehension. Previous methods have two weaknesses. First, most of them utilize a simple classifier or a verifiable module to determine whether a question is unanswerable. However, they predict the probability of unanswerable questions directly, which lacks the explicit process of explanation. Second, these methods treat the answer extraction task and the unanswerable MRC task as two independent tasks without considering the logical consistency of their results, which leads to the contradiction between two tasks with opposite results on the same question. In this paper, we propose an AdaPtive Evidence-driven Reasoning Network (APER) which can adaptively choose to extract an answer span or output an unanswerable prediction based on the evidence which is refined by Evidence Refining Reasoner. Furthermore, the APER directly correlates the two tasks and guarantees the logical consistency of their results with the proposed novel logical consistency training objective. Experiments on the SQuAD 2.0 and DuReader demonstrate the superiority and effectiveness of our proposed APER model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ganjqly应助Lily采纳,获得10
刚刚
1秒前
余真谛应助lm采纳,获得10
2秒前
舒适新梅发布了新的文献求助10
2秒前
3秒前
Mannose完成签到,获得积分10
3秒前
1111完成签到,获得积分10
4秒前
kk发布了新的文献求助30
4秒前
赵思远发布了新的文献求助10
4秒前
p t t完成签到,获得积分10
4秒前
仂尤发布了新的文献求助20
5秒前
fs发布了新的文献求助10
5秒前
5秒前
FashionBoy应助忧伤的二锅头采纳,获得10
6秒前
爱听歌的青文完成签到,获得积分10
7秒前
7秒前
烟雨梦兮发布了新的文献求助10
8秒前
月亮邮递员完成签到 ,获得积分10
8秒前
mmm完成签到,获得积分10
8秒前
xfy完成签到,获得积分10
8秒前
小蘑菇应助DOC_LIU采纳,获得10
8秒前
雪1214关注了科研通微信公众号
9秒前
研友_ZrldbL完成签到,获得积分20
9秒前
陳.完成签到,获得积分10
9秒前
大模型应助束缚采纳,获得10
10秒前
11秒前
DAL完成签到,获得积分20
12秒前
Halo完成签到,获得积分10
13秒前
lhnee应助舒适新梅采纳,获得10
13秒前
cRAMing完成签到,获得积分10
14秒前
15秒前
科研吗喽完成签到,获得积分10
15秒前
玉玉应助昏睡的汉堡采纳,获得20
15秒前
乐观的大叔完成签到 ,获得积分10
17秒前
SYLH应助JUGG采纳,获得10
17秒前
yyds完成签到,获得积分10
17秒前
17秒前
慕青应助ww采纳,获得10
17秒前
18秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199