亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-Based Pelvic T1-Weighted MR Image Synthesis Using UNet, UNet++ and Cycle-Consistent Generative Adversarial Network (Cycle-GAN)

分割 磁共振成像 医学 放射治疗计划 放射科 计算机科学 手术计划 人工智能 放射治疗
作者
Reza Kalantar,Christina Messiou,Jessica M. Winfield,Alexandra Renn,Arash Latifoltojar,Kate Downey,Aslam Sohaib,Susan Lalondrelle,Dow-Mu Koh,Matthew Blackledge
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:8
标识
DOI:10.3389/fonc.2021.665807
摘要

Computed tomography (CT) and magnetic resonance imaging (MRI) are the mainstay imaging modalities in radiotherapy planning. In MR-Linac treatment, manual annotation of organs-at-risk (OARs) and clinical volumes requires a significant clinician interaction and is a major challenge. Currently, there is a lack of available pre-annotated MRI data for training supervised segmentation algorithms. This study aimed to develop a deep learning (DL)-based framework to synthesize pelvic T1-weighted MRI from a pre-existing repository of clinical planning CTs.MRI synthesis was performed using UNet++ and cycle-consistent generative adversarial network (Cycle-GAN), and the predictions were compared qualitatively and quantitatively against a baseline UNet model using pixel-wise and perceptual loss functions. Additionally, the Cycle-GAN predictions were evaluated through qualitative expert testing (4 radiologists), and a pelvic bone segmentation routine based on a UNet architecture was trained on synthetic MRI using CT-propagated contours and subsequently tested on real pelvic T1 weighted MRI scans.In our experiments, Cycle-GAN generated sharp images for all pelvic slices whilst UNet and UNet++ predictions suffered from poorer spatial resolution within deformable soft-tissues (e.g. bladder, bowel). Qualitative radiologist assessment showed inter-expert variabilities in the test scores; each of the four radiologists correctly identified images as acquired/synthetic with 67%, 100%, 86% and 94% accuracy. Unsupervised segmentation of pelvic bone on T1-weighted images was successful in a number of test cases.Pelvic MRI synthesis is a challenging task due to the absence of soft-tissue contrast on CT. Our study showed the potential of deep learning models for synthesizing realistic MR images from CT, and transferring cross-domain knowledge which may help to expand training datasets for 21 development of MR-only segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小红书求接接接接一篇完成签到,获得积分20
刚刚
林鹏达发布了新的文献求助10
1秒前
lin.xy完成签到,获得积分10
10秒前
tufei完成签到,获得积分10
11秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
义气代荷完成签到,获得积分20
17秒前
冰激凌完成签到,获得积分10
23秒前
Akim应助lovesf采纳,获得10
45秒前
46秒前
49秒前
无情莫英发布了新的文献求助30
51秒前
XCHI完成签到 ,获得积分10
58秒前
1分钟前
852应助无情莫英采纳,获得10
1分钟前
狐狸小姐完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Orange应助科研通管家采纳,获得30
2分钟前
2分钟前
地瓜地瓜完成签到 ,获得积分10
3分钟前
坚强的广山完成签到,获得积分0
3分钟前
smile发布了新的文献求助10
3分钟前
iShine完成签到 ,获得积分10
3分钟前
4分钟前
smile完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
村上春树的摩的完成签到 ,获得积分10
4分钟前
无花果应助李豆豆采纳,获得10
5分钟前
小白菜完成签到,获得积分10
5分钟前
5分钟前
无情莫英发布了新的文献求助10
5分钟前
帅气的熊猫完成签到,获得积分10
5分钟前
在水一方应助FEI采纳,获得10
5分钟前
SciGPT应助有热心愿意采纳,获得10
5分钟前
科研通AI5应助有热心愿意采纳,获得10
5分钟前
5分钟前
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550224
求助须知:如何正确求助?哪些是违规求助? 3126623
关于积分的说明 9369459
捐赠科研通 2825645
什么是DOI,文献DOI怎么找? 1553363
邀请新用户注册赠送积分活动 724846
科研通“疑难数据库(出版商)”最低求助积分说明 714438