计算机科学
差异进化
分割
图像分割
人工智能
算法
模式识别(心理学)
作者
Lei Liu,Dong Zhao,Fanhua Yu,Ali Asghar Heidari,Jintao Ru,Huiling Chen,Majdi Mafarja,Hamza Turabieh,Zhifang Pan
标识
DOI:10.1016/j.compbiomed.2021.104910
摘要
Breast cancer is one of the most dangerous diseases for women's health, and it is imperative to provide the necessary diagnostic assistance for it. The medical image processing technology is one of the most critical of all complementary diagnostic technologies. Image segmentation is the core step of image processing, where multilevel image segmentation is considered one of the most efficient and straightforward methods. Many multilevel image segmentation methods based on evolutionary and population-based methods have been proposed in recent years, but many have the fatal weakness of poor convergence accuracy and the tendency to fall into local optimum. Therefore, to overcome these weaknesses, this paper proposes a modified differential evolution (MDE) algorithm with a vision based on the slime mould foraging behavior, where the recently proposed slime mould algorithm (SMA) inspires it. Besides, to obtain high-quality breast cancer image segmentation results, this paper also develops an excellent MDE-based multilevel image segmentation model, the core of which is based on non-local means 2D histogram and 2D Kapur's entropy. To effectively validate the performance of the proposed method, a comparison experiment between MDE and its similar algorithms was first carried out on IEEE CEC 2014. Then, an initial validation of the MDE-based multilevel image segmentation model was performed by utilizing a reference image set. Finally, the MDE-based multilevel image segmentation model was compared with peers using breast invasive ductal carcinoma images. A series of experimental results have proved that MDE is an evolutionary algorithm with high convergence accuracy and the ability to jump out of the local optimum, as well as effectively demonstrated that the developed model is a high-quality segmentation method that can provide practical support for further research of breast invasive ductal carcinoma pathological image processing.
科研通智能强力驱动
Strongly Powered by AbleSci AI