Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation

计算机科学 差异进化 分割 图像分割 人工智能 算法 模式识别(心理学)
作者
Lei Liu,Dong Zhao,Fanhua Yu,Ali Asghar Heidari,Jintao Ru,Huiling Chen,Majdi Mafarja,Hamza Turabieh,Zhifang Pan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:138: 104910-104910 被引量:77
标识
DOI:10.1016/j.compbiomed.2021.104910
摘要

Breast cancer is one of the most dangerous diseases for women's health, and it is imperative to provide the necessary diagnostic assistance for it. The medical image processing technology is one of the most critical of all complementary diagnostic technologies. Image segmentation is the core step of image processing, where multilevel image segmentation is considered one of the most efficient and straightforward methods. Many multilevel image segmentation methods based on evolutionary and population-based methods have been proposed in recent years, but many have the fatal weakness of poor convergence accuracy and the tendency to fall into local optimum. Therefore, to overcome these weaknesses, this paper proposes a modified differential evolution (MDE) algorithm with a vision based on the slime mould foraging behavior, where the recently proposed slime mould algorithm (SMA) inspires it. Besides, to obtain high-quality breast cancer image segmentation results, this paper also develops an excellent MDE-based multilevel image segmentation model, the core of which is based on non-local means 2D histogram and 2D Kapur's entropy. To effectively validate the performance of the proposed method, a comparison experiment between MDE and its similar algorithms was first carried out on IEEE CEC 2014. Then, an initial validation of the MDE-based multilevel image segmentation model was performed by utilizing a reference image set. Finally, the MDE-based multilevel image segmentation model was compared with peers using breast invasive ductal carcinoma images. A series of experimental results have proved that MDE is an evolutionary algorithm with high convergence accuracy and the ability to jump out of the local optimum, as well as effectively demonstrated that the developed model is a high-quality segmentation method that can provide practical support for further research of breast invasive ductal carcinoma pathological image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天冷了hhhdh完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
健壮的以莲应助美亲采纳,获得10
4秒前
Lucas应助香风智乃采纳,获得10
5秒前
研友_LOoz0L发布了新的文献求助10
5秒前
清_完成签到,获得积分10
5秒前
称心冬云发布了新的文献求助10
5秒前
哼哼唧唧发布了新的文献求助10
6秒前
彭于晏应助樱桃小王子采纳,获得10
6秒前
wangdaxue发布了新的文献求助10
7秒前
7秒前
慕青应助彭a采纳,获得10
8秒前
8秒前
9秒前
YT完成签到,获得积分20
9秒前
11秒前
honey发布了新的文献求助30
12秒前
duanr完成签到,获得积分10
12秒前
14秒前
风中道罡发布了新的文献求助10
14秒前
利好完成签到 ,获得积分10
15秒前
simon发布了新的文献求助10
16秒前
风中的静珊完成签到,获得积分10
17秒前
研友_VZG7GZ应助称心冬云采纳,获得10
18秒前
李健应助偷乐采纳,获得10
18秒前
斯文败类应助111采纳,获得10
18秒前
Manta发布了新的文献求助10
19秒前
夏日香气发布了新的文献求助10
19秒前
现代的汉堡完成签到,获得积分10
20秒前
simon完成签到,获得积分10
20秒前
我是老大应助张文懿采纳,获得10
21秒前
21秒前
岩墩墩发布了新的文献求助10
22秒前
独狼完成签到 ,获得积分10
22秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014