Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation

计算机科学 差异进化 分割 图像分割 人工智能 算法 模式识别(心理学)
作者
Lei Liu,Dong Zhao,Fanhua Yu,Ali Asghar Heidari,Jintao Ru,Huiling Chen,Majdi Mafarja,Hamza Turabieh,Zhifang Pan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:138: 104910-104910 被引量:77
标识
DOI:10.1016/j.compbiomed.2021.104910
摘要

Breast cancer is one of the most dangerous diseases for women's health, and it is imperative to provide the necessary diagnostic assistance for it. The medical image processing technology is one of the most critical of all complementary diagnostic technologies. Image segmentation is the core step of image processing, where multilevel image segmentation is considered one of the most efficient and straightforward methods. Many multilevel image segmentation methods based on evolutionary and population-based methods have been proposed in recent years, but many have the fatal weakness of poor convergence accuracy and the tendency to fall into local optimum. Therefore, to overcome these weaknesses, this paper proposes a modified differential evolution (MDE) algorithm with a vision based on the slime mould foraging behavior, where the recently proposed slime mould algorithm (SMA) inspires it. Besides, to obtain high-quality breast cancer image segmentation results, this paper also develops an excellent MDE-based multilevel image segmentation model, the core of which is based on non-local means 2D histogram and 2D Kapur's entropy. To effectively validate the performance of the proposed method, a comparison experiment between MDE and its similar algorithms was first carried out on IEEE CEC 2014. Then, an initial validation of the MDE-based multilevel image segmentation model was performed by utilizing a reference image set. Finally, the MDE-based multilevel image segmentation model was compared with peers using breast invasive ductal carcinoma images. A series of experimental results have proved that MDE is an evolutionary algorithm with high convergence accuracy and the ability to jump out of the local optimum, as well as effectively demonstrated that the developed model is a high-quality segmentation method that can provide practical support for further research of breast invasive ductal carcinoma pathological image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小倩倩加油采纳,获得10
刚刚
Leif应助兔兔sci采纳,获得10
1秒前
Voloid发布了新的文献求助10
1秒前
liuyan发布了新的文献求助10
1秒前
东东发布了新的文献求助10
3秒前
Zoeyz发布了新的文献求助10
4秒前
Voloid完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
tuanheqi应助萧水白采纳,获得100
10秒前
王哈完成签到,获得积分10
10秒前
王烨发布了新的文献求助10
11秒前
小马甲应助Brian采纳,获得10
12秒前
王企鹅发布了新的文献求助10
13秒前
可爱的函函应助Hehe采纳,获得10
13秒前
13秒前
15秒前
摘星012发布了新的文献求助10
15秒前
16秒前
17秒前
王企鹅完成签到,获得积分10
18秒前
19秒前
Zephyr发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
21秒前
李爱国应助木棉采纳,获得10
23秒前
8R60d8应助ABC采纳,获得10
23秒前
Cathy发布了新的文献求助10
23秒前
传奇3应助ardejiang采纳,获得10
23秒前
24秒前
明明发布了新的文献求助10
24秒前
Brian发布了新的文献求助10
25秒前
26秒前
27秒前
千夕完成签到,获得积分10
29秒前
Eillen发布了新的文献求助10
30秒前
福宝完成签到 ,获得积分10
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613