Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation

计算机科学 差异进化 分割 图像分割 人工智能 算法 模式识别(心理学)
作者
Lei Liu,Dong Zhao,Fanhua Yu,Ali Asghar Heidari,Jintao Ru,Huiling Chen,Majdi Mafarja,Hamza Turabieh,Zhifang Pan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:138: 104910-104910 被引量:84
标识
DOI:10.1016/j.compbiomed.2021.104910
摘要

Breast cancer is one of the most dangerous diseases for women's health, and it is imperative to provide the necessary diagnostic assistance for it. The medical image processing technology is one of the most critical of all complementary diagnostic technologies. Image segmentation is the core step of image processing, where multilevel image segmentation is considered one of the most efficient and straightforward methods. Many multilevel image segmentation methods based on evolutionary and population-based methods have been proposed in recent years, but many have the fatal weakness of poor convergence accuracy and the tendency to fall into local optimum. Therefore, to overcome these weaknesses, this paper proposes a modified differential evolution (MDE) algorithm with a vision based on the slime mould foraging behavior, where the recently proposed slime mould algorithm (SMA) inspires it. Besides, to obtain high-quality breast cancer image segmentation results, this paper also develops an excellent MDE-based multilevel image segmentation model, the core of which is based on non-local means 2D histogram and 2D Kapur's entropy. To effectively validate the performance of the proposed method, a comparison experiment between MDE and its similar algorithms was first carried out on IEEE CEC 2014. Then, an initial validation of the MDE-based multilevel image segmentation model was performed by utilizing a reference image set. Finally, the MDE-based multilevel image segmentation model was compared with peers using breast invasive ductal carcinoma images. A series of experimental results have proved that MDE is an evolutionary algorithm with high convergence accuracy and the ability to jump out of the local optimum, as well as effectively demonstrated that the developed model is a high-quality segmentation method that can provide practical support for further research of breast invasive ductal carcinoma pathological image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知止完成签到,获得积分10
刚刚
平淡思远完成签到,获得积分10
刚刚
1秒前
XiaoyanQiang完成签到,获得积分10
1秒前
1秒前
1秒前
花花发布了新的文献求助10
1秒前
略略略完成签到,获得积分10
1秒前
Michelle完成签到 ,获得积分10
1秒前
hq完成签到 ,获得积分10
1秒前
别看我只是一只羊完成签到,获得积分10
2秒前
wanci应助做好胶水采纳,获得10
2秒前
2秒前
Disguise发布了新的文献求助10
2秒前
刘笑完成签到 ,获得积分10
2秒前
2秒前
轻松的鑫完成签到,获得积分10
3秒前
yohana完成签到 ,获得积分10
4秒前
内向士萧完成签到,获得积分10
4秒前
iiing完成签到,获得积分10
5秒前
5秒前
壹加壹完成签到,获得积分10
5秒前
5秒前
小蘑菇应助大地采纳,获得10
5秒前
归途的羔羊完成签到,获得积分10
6秒前
来杯椰汁发布了新的文献求助10
6秒前
新新新完成签到 ,获得积分10
6秒前
泠漓完成签到 ,获得积分10
6秒前
小任吃不胖完成签到,获得积分10
6秒前
7秒前
内向士萧发布了新的文献求助10
7秒前
coolplex发布了新的文献求助10
7秒前
阿北发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
蒸馏水完成签到,获得积分10
7秒前
许愿完成签到 ,获得积分10
8秒前
8秒前
鑫鑫完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472