Copper-based composites derived from metal-organic frameworks on carbohydrates-rich corncobs as efficient catalysts for organic compounds removal

催化作用 煅烧 化学工程 化学 多孔性 环境友好型 选择性催化还原 选择性 材料科学 有机化学 生态学 生物 工程类
作者
Ya Wang,Zheng‐Ying Yang,Bai-Xin Yao,Cheng Ding,Keqiang Xu,Xiu‐Li Yang,Ming-Hua Xie
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:572: 151396-151396 被引量:8
标识
DOI:10.1016/j.apsusc.2021.151396
摘要

It is of great significance to exploit environmentally friendly, efficient and economical catalysts for dealing with wastewater and other aquatic environments. In this study, a series of P-doped Cu/Cu2O/C heterostructures were obtained by controlled calcination of corncobs supported Cu-MOF in different temperature. Comprehensive structural characterizations indicate the polyhedron morphology and high porosity of [email protected] The composites were further explored as an efficient catalyst for catalytic reduction of 4-nitrophenol (4-NP). Remarkably, [email protected] could efficiently catalyze the reduction of 4-NP, and the reduction could be finished within 90 s with a 4-aminophenol (4-AP) selectivity of >99%, demonstrating the excellent performance of Cu-based catalysts for 4-NP reduction. The application scope could be further expanded to the catalytic reduction of ofloxacin and a conversion of 95.7% could be achieved within 10 min. Reproducibility studies and characterizations comprehensively demonstrate the promising potential of [email protected] acting as efficient catalyst for the reductive removal of environmental pollutants. This work provides a facile strategy for the fabrication of highly active catalysts for high-performance environmental purification, and the employment of renewable bioresources and functional MOFs represents a promising strategy for design and synthesis of highly active catalysts towards various advanced applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路过的风景完成签到 ,获得积分10
刚刚
111发布了新的文献求助10
1秒前
2秒前
juanjua完成签到,获得积分10
2秒前
3秒前
猪猪仔完成签到 ,获得积分10
3秒前
3秒前
夕夕成玦完成签到,获得积分10
3秒前
我是老大应助菠萝派采纳,获得10
3秒前
king完成签到,获得积分10
4秒前
英俊的铭应助jwb711采纳,获得10
5秒前
Blank完成签到 ,获得积分10
5秒前
稳重的仙人掌完成签到,获得积分10
6秒前
pihril完成签到,获得积分10
6秒前
Labman完成签到,获得积分10
6秒前
tsntn完成签到,获得积分10
6秒前
bofu发布了新的文献求助10
7秒前
7秒前
meng完成签到,获得积分10
8秒前
chen完成签到,获得积分10
9秒前
谦虚完成签到 ,获得积分20
9秒前
积极的夜阑完成签到,获得积分10
10秒前
nn完成签到,获得积分10
10秒前
10秒前
受伤的洋葱完成签到,获得积分10
11秒前
ivy0425完成签到,获得积分10
11秒前
科研通AI5应助111采纳,获得10
11秒前
梅小七完成签到,获得积分10
12秒前
bkagyin应助无限海白采纳,获得30
12秒前
康zai发布了新的文献求助10
12秒前
13秒前
金阿垚在科研完成签到,获得积分10
14秒前
昼尽夜临完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
Jasper应助棉花糖采纳,获得10
17秒前
pluto应助月yue采纳,获得10
17秒前
ice发布了新的文献求助10
18秒前
我和老俞一起冲完成签到,获得积分10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300