Research and Implementation of Emotion Recognition Platform Based on Multiple Physiological Signals

悲伤 计算机科学 击键动态学 决策树 人工智能 愤怒 语音识别 机器学习 模式识别(心理学) 特征提取 密码 计算机安全 S/键 心理学 精神科
作者
Nie Chun-yan,Huiyu Wang,Ru-jun Fan,Xin-lei Ruan,Yang Cheng-jin,Min-shi Che
出处
期刊:International Conference Data Science 卷期号:: 241-245 被引量:1
标识
DOI:10.1145/3478905.3478954
摘要

With the rapid development of artificial intelligence, human-computer interaction, pattern recognition and other technologies, emotion recognition has become a hot topic in this field. Traditional emotional recognition studies mostly use voice features and facial expression image features for recognition, but the external expression features of these emotions are easily subject to subjective control of the human body. However, physiological information is closely related to the cerebral cortex and nerve center of human body, which is objective and authentic. In this paper, four kinds of chaotic characteristic parameters were extracted from ECG(Electrocardiogram), SC(Skin Conductance) and RSP(Respiration), including complexity, box dimension, approximate entropy and information entropy. Three kinds of emotions (Joy, Anger and Sadness) were identified by C4.5 decision tree algorithm. The results of the study show that this method is feasible for emotion recognition. Using C# programming language, Visual Studio integrated development environment (IDE), SQL Server database and other tools, a emotional recognition platform based on multi-physiological information was established, which can extract 12 chaotic characteristic parameters from the collected ECG, SC and RSP. Joy, anger and sadness were recognized through the C4.5 decision tree classifier algorithm, and finally save the information to the local database. This platform includes user login, volunteer management, administrator management, data center and other functional modules to ensure the security and information integrity of the platform. The verification experiment was carried out on the completed platform(In this paper, omit), which proved the effectiveness and practicability of the platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DXX完成签到,获得积分10
1秒前
Owen应助神勇荷花采纳,获得10
1秒前
锐意发布了新的文献求助10
1秒前
会飞的猪发布了新的文献求助10
2秒前
哎哟大侠发布了新的文献求助10
2秒前
怕孤单的听寒完成签到,获得积分10
2秒前
asdfg123发布了新的文献求助10
3秒前
3秒前
渴望者发布了新的文献求助10
4秒前
E9发布了新的文献求助10
4秒前
Kaen完成签到,获得积分10
4秒前
5秒前
放荡不羁发布了新的文献求助10
5秒前
6秒前
6秒前
李健应助小田睡不醒采纳,获得10
6秒前
junyang发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
ttxxcdx完成签到 ,获得积分10
8秒前
janice发布了新的文献求助10
8秒前
8秒前
科研通AI6应助123采纳,获得10
9秒前
imi发布了新的文献求助10
9秒前
亓大大完成签到,获得积分10
9秒前
善学以致用应助猪猪hero采纳,获得10
9秒前
10秒前
聪明的鞅发布了新的文献求助10
11秒前
共享精神应助love采纳,获得10
11秒前
11秒前
方舟完成签到,获得积分10
12秒前
核桃应助科研通管家采纳,获得10
12秒前
12秒前
myfayewang应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
核桃应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781