Research and Implementation of Emotion Recognition Platform Based on Multiple Physiological Signals

悲伤 计算机科学 击键动态学 决策树 人工智能 愤怒 语音识别 机器学习 模式识别(心理学) 特征提取 密码 计算机安全 S/键 心理学 精神科
作者
Nie Chun-yan,Huiyu Wang,Ru-jun Fan,Xin-lei Ruan,Yang Cheng-jin,Min-shi Che
出处
期刊:International Conference Data Science 卷期号:: 241-245 被引量:1
标识
DOI:10.1145/3478905.3478954
摘要

With the rapid development of artificial intelligence, human-computer interaction, pattern recognition and other technologies, emotion recognition has become a hot topic in this field. Traditional emotional recognition studies mostly use voice features and facial expression image features for recognition, but the external expression features of these emotions are easily subject to subjective control of the human body. However, physiological information is closely related to the cerebral cortex and nerve center of human body, which is objective and authentic. In this paper, four kinds of chaotic characteristic parameters were extracted from ECG(Electrocardiogram), SC(Skin Conductance) and RSP(Respiration), including complexity, box dimension, approximate entropy and information entropy. Three kinds of emotions (Joy, Anger and Sadness) were identified by C4.5 decision tree algorithm. The results of the study show that this method is feasible for emotion recognition. Using C# programming language, Visual Studio integrated development environment (IDE), SQL Server database and other tools, a emotional recognition platform based on multi-physiological information was established, which can extract 12 chaotic characteristic parameters from the collected ECG, SC and RSP. Joy, anger and sadness were recognized through the C4.5 decision tree classifier algorithm, and finally save the information to the local database. This platform includes user login, volunteer management, administrator management, data center and other functional modules to ensure the security and information integrity of the platform. The verification experiment was carried out on the completed platform(In this paper, omit), which proved the effectiveness and practicability of the platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
46464发布了新的文献求助10
刚刚
1秒前
purejun完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
3秒前
彭冬华发布了新的文献求助10
3秒前
发发你是弟弟完成签到,获得积分10
4秒前
无花果应助明亮冰颜采纳,获得10
4秒前
沉舟完成签到 ,获得积分10
6秒前
猪猪hero应助笑ige采纳,获得10
6秒前
优美紫槐发布了新的文献求助10
6秒前
8秒前
8秒前
naturehome发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
wanci应助chess采纳,获得10
11秒前
12秒前
12秒前
优美紫槐发布了新的文献求助10
12秒前
13秒前
刘雨凝完成签到,获得积分10
13秒前
Charge完成签到,获得积分10
13秒前
村上春树的摩的完成签到 ,获得积分10
14秒前
14秒前
自在完成签到 ,获得积分10
14秒前
15秒前
Lemon啊发布了新的文献求助10
16秒前
16秒前
Harper完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
Truman发布了新的文献求助10
17秒前
SunKnight发布了新的文献求助10
17秒前
19秒前
qq完成签到,获得积分10
19秒前
优美紫槐发布了新的文献求助10
20秒前
hibiwi完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513