Research and Implementation of Emotion Recognition Platform Based on Multiple Physiological Signals

悲伤 计算机科学 击键动态学 决策树 人工智能 愤怒 语音识别 机器学习 模式识别(心理学) 特征提取 密码 计算机安全 心理学 精神科 S/键
作者
Nie Chun-yan,Huiyu Wang,Ru-jun Fan,Xin-lei Ruan,Yang Cheng-jin,Min-shi Che
出处
期刊:International Conference Data Science 卷期号:: 241-245 被引量:1
标识
DOI:10.1145/3478905.3478954
摘要

With the rapid development of artificial intelligence, human-computer interaction, pattern recognition and other technologies, emotion recognition has become a hot topic in this field. Traditional emotional recognition studies mostly use voice features and facial expression image features for recognition, but the external expression features of these emotions are easily subject to subjective control of the human body. However, physiological information is closely related to the cerebral cortex and nerve center of human body, which is objective and authentic. In this paper, four kinds of chaotic characteristic parameters were extracted from ECG(Electrocardiogram), SC(Skin Conductance) and RSP(Respiration), including complexity, box dimension, approximate entropy and information entropy. Three kinds of emotions (Joy, Anger and Sadness) were identified by C4.5 decision tree algorithm. The results of the study show that this method is feasible for emotion recognition. Using C# programming language, Visual Studio integrated development environment (IDE), SQL Server database and other tools, a emotional recognition platform based on multi-physiological information was established, which can extract 12 chaotic characteristic parameters from the collected ECG, SC and RSP. Joy, anger and sadness were recognized through the C4.5 decision tree classifier algorithm, and finally save the information to the local database. This platform includes user login, volunteer management, administrator management, data center and other functional modules to ensure the security and information integrity of the platform. The verification experiment was carried out on the completed platform(In this paper, omit), which proved the effectiveness and practicability of the platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许子健发布了新的文献求助10
1秒前
nini发布了新的文献求助10
1秒前
1秒前
开朗的山彤应助张阿童木采纳,获得10
1秒前
追寻依风发布了新的文献求助10
1秒前
隐形曼青应助雾昂采纳,获得10
1秒前
2秒前
betsy发布了新的文献求助10
3秒前
wuhuhu关注了科研通微信公众号
3秒前
eAN完成签到,获得积分10
3秒前
zl完成签到,获得积分10
3秒前
桐桐应助yyyhhh采纳,获得10
3秒前
4秒前
亓大大发布了新的文献求助10
4秒前
香蕉觅云应助反方向的钟采纳,获得30
4秒前
hqy发布了新的文献求助20
4秒前
852应助Gotyababy采纳,获得10
4秒前
seven发布了新的文献求助10
5秒前
PAN完成签到,获得积分10
5秒前
6秒前
香蕉觅云应助Han采纳,获得10
6秒前
太阳发布了新的文献求助10
6秒前
Mia完成签到,获得积分10
6秒前
飞飞发布了新的文献求助10
6秒前
Yu发布了新的文献求助10
6秒前
zyq发布了新的文献求助10
7秒前
黄丁文完成签到,获得积分20
7秒前
7秒前
风中的曼彤完成签到 ,获得积分10
8秒前
复杂的语蕊完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
nini完成签到,获得积分10
8秒前
疯狂的猕猴桃完成签到 ,获得积分10
8秒前
科研小能手完成签到,获得积分10
9秒前
科研通AI5应助大方小白采纳,获得10
9秒前
科目三应助岩追研采纳,获得10
9秒前
清爽熊猫完成签到,获得积分10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646