Research and Implementation of Emotion Recognition Platform Based on Multiple Physiological Signals

悲伤 计算机科学 击键动态学 决策树 人工智能 愤怒 语音识别 机器学习 模式识别(心理学) 特征提取 密码 计算机安全 S/键 心理学 精神科
作者
Nie Chun-yan,Huiyu Wang,Ru-jun Fan,Xin-lei Ruan,Yang Cheng-jin,Min-shi Che
出处
期刊:International Conference Data Science 卷期号:: 241-245 被引量:1
标识
DOI:10.1145/3478905.3478954
摘要

With the rapid development of artificial intelligence, human-computer interaction, pattern recognition and other technologies, emotion recognition has become a hot topic in this field. Traditional emotional recognition studies mostly use voice features and facial expression image features for recognition, but the external expression features of these emotions are easily subject to subjective control of the human body. However, physiological information is closely related to the cerebral cortex and nerve center of human body, which is objective and authentic. In this paper, four kinds of chaotic characteristic parameters were extracted from ECG(Electrocardiogram), SC(Skin Conductance) and RSP(Respiration), including complexity, box dimension, approximate entropy and information entropy. Three kinds of emotions (Joy, Anger and Sadness) were identified by C4.5 decision tree algorithm. The results of the study show that this method is feasible for emotion recognition. Using C# programming language, Visual Studio integrated development environment (IDE), SQL Server database and other tools, a emotional recognition platform based on multi-physiological information was established, which can extract 12 chaotic characteristic parameters from the collected ECG, SC and RSP. Joy, anger and sadness were recognized through the C4.5 decision tree classifier algorithm, and finally save the information to the local database. This platform includes user login, volunteer management, administrator management, data center and other functional modules to ensure the security and information integrity of the platform. The verification experiment was carried out on the completed platform(In this paper, omit), which proved the effectiveness and practicability of the platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
esther颖发布了新的文献求助10
刚刚
宝安完成签到,获得积分10
刚刚
1秒前
3秒前
犹豫大侠完成签到,获得积分10
4秒前
CipherSage应助宝安采纳,获得10
5秒前
Mr.Ren完成签到,获得积分10
5秒前
yeah完成签到,获得积分10
5秒前
5秒前
涅槃完成签到,获得积分20
6秒前
怕黑蜜蜂发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
苗松发布了新的文献求助10
8秒前
8秒前
9秒前
圆锥香蕉举报琪筱求助涉嫌违规
11秒前
小太阳发布了新的文献求助10
11秒前
null应助忍冬半夏采纳,获得10
12秒前
12秒前
14秒前
长情的问枫完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
科研通AI6.1应助yang采纳,获得10
15秒前
叶问完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
znn发布了新的文献求助10
16秒前
极电完成签到,获得积分10
17秒前
拉格朗日完成签到,获得积分10
17秒前
sdd完成签到,获得积分10
17秒前
大白应助静静采纳,获得20
18秒前
科研3c完成签到,获得积分20
18秒前
19秒前
20秒前
20秒前
复杂的士萧完成签到,获得积分10
20秒前
21秒前
ayayaya发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965