Research and Implementation of Emotion Recognition Platform Based on Multiple Physiological Signals

悲伤 计算机科学 击键动态学 决策树 人工智能 愤怒 语音识别 机器学习 模式识别(心理学) 特征提取 密码 计算机安全 心理学 精神科 S/键
作者
Nie Chun-yan,Huiyu Wang,Ru-jun Fan,Xin-lei Ruan,Yang Cheng-jin,Min-shi Che
出处
期刊:International Conference Data Science 卷期号:: 241-245 被引量:1
标识
DOI:10.1145/3478905.3478954
摘要

With the rapid development of artificial intelligence, human-computer interaction, pattern recognition and other technologies, emotion recognition has become a hot topic in this field. Traditional emotional recognition studies mostly use voice features and facial expression image features for recognition, but the external expression features of these emotions are easily subject to subjective control of the human body. However, physiological information is closely related to the cerebral cortex and nerve center of human body, which is objective and authentic. In this paper, four kinds of chaotic characteristic parameters were extracted from ECG(Electrocardiogram), SC(Skin Conductance) and RSP(Respiration), including complexity, box dimension, approximate entropy and information entropy. Three kinds of emotions (Joy, Anger and Sadness) were identified by C4.5 decision tree algorithm. The results of the study show that this method is feasible for emotion recognition. Using C# programming language, Visual Studio integrated development environment (IDE), SQL Server database and other tools, a emotional recognition platform based on multi-physiological information was established, which can extract 12 chaotic characteristic parameters from the collected ECG, SC and RSP. Joy, anger and sadness were recognized through the C4.5 decision tree classifier algorithm, and finally save the information to the local database. This platform includes user login, volunteer management, administrator management, data center and other functional modules to ensure the security and information integrity of the platform. The verification experiment was carried out on the completed platform(In this paper, omit), which proved the effectiveness and practicability of the platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ggdio完成签到,获得积分10
1秒前
柠檬要加冰完成签到 ,获得积分10
1秒前
1秒前
2秒前
ubiqutin完成签到,获得积分20
3秒前
上官若男应助北鸢采纳,获得10
3秒前
共享精神应助Steve采纳,获得10
3秒前
所所应助nunu采纳,获得10
4秒前
5秒前
5秒前
ggdio发布了新的文献求助10
5秒前
scxl2000发布了新的文献求助10
5秒前
ubiqutin发布了新的文献求助10
6秒前
正直白梅发布了新的文献求助10
6秒前
zq发布了新的文献求助10
6秒前
月亮打盹儿完成签到,获得积分10
6秒前
zrs发布了新的文献求助10
6秒前
7秒前
coolkid应助jiaojiao采纳,获得10
8秒前
田様应助冷酷的猎豹采纳,获得10
8秒前
cherry完成签到 ,获得积分20
9秒前
yang完成签到,获得积分10
10秒前
CC完成签到,获得积分10
10秒前
树林发布了新的文献求助10
10秒前
10秒前
丫丫完成签到,获得积分10
10秒前
10秒前
我要瘦完成签到,获得积分10
12秒前
14秒前
正直白梅完成签到,获得积分20
15秒前
16秒前
16秒前
16秒前
外向的凝阳完成签到 ,获得积分10
16秒前
nunu发布了新的文献求助10
16秒前
快乐小狗完成签到,获得积分10
16秒前
陌上人完成签到,获得积分10
17秒前
在水一方应助zrs采纳,获得10
17秒前
科研小秦完成签到,获得积分10
17秒前
在水一方应助张润泽采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942