已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research and Implementation of Emotion Recognition Platform Based on Multiple Physiological Signals

悲伤 计算机科学 击键动态学 决策树 人工智能 愤怒 语音识别 机器学习 模式识别(心理学) 特征提取 密码 计算机安全 S/键 心理学 精神科
作者
Nie Chun-yan,Huiyu Wang,Ru-jun Fan,Xin-lei Ruan,Yang Cheng-jin,Min-shi Che
出处
期刊:International Conference Data Science 卷期号:: 241-245 被引量:1
标识
DOI:10.1145/3478905.3478954
摘要

With the rapid development of artificial intelligence, human-computer interaction, pattern recognition and other technologies, emotion recognition has become a hot topic in this field. Traditional emotional recognition studies mostly use voice features and facial expression image features for recognition, but the external expression features of these emotions are easily subject to subjective control of the human body. However, physiological information is closely related to the cerebral cortex and nerve center of human body, which is objective and authentic. In this paper, four kinds of chaotic characteristic parameters were extracted from ECG(Electrocardiogram), SC(Skin Conductance) and RSP(Respiration), including complexity, box dimension, approximate entropy and information entropy. Three kinds of emotions (Joy, Anger and Sadness) were identified by C4.5 decision tree algorithm. The results of the study show that this method is feasible for emotion recognition. Using C# programming language, Visual Studio integrated development environment (IDE), SQL Server database and other tools, a emotional recognition platform based on multi-physiological information was established, which can extract 12 chaotic characteristic parameters from the collected ECG, SC and RSP. Joy, anger and sadness were recognized through the C4.5 decision tree classifier algorithm, and finally save the information to the local database. This platform includes user login, volunteer management, administrator management, data center and other functional modules to ensure the security and information integrity of the platform. The verification experiment was carried out on the completed platform(In this paper, omit), which proved the effectiveness and practicability of the platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Good Hope完成签到,获得积分10
1秒前
1秒前
王先生发布了新的文献求助10
1秒前
刘三哥完成签到 ,获得积分10
3秒前
背后的幻巧完成签到,获得积分10
3秒前
msp发布了新的文献求助10
5秒前
5秒前
哈哈哈完成签到 ,获得积分10
6秒前
爆米花应助jimskylxk采纳,获得10
6秒前
大模型应助柍踏采纳,获得10
7秒前
乐乐应助April采纳,获得10
9秒前
9秒前
岂曰无衣完成签到 ,获得积分10
10秒前
李健的小迷弟应助哦哦哦采纳,获得10
12秒前
呼斯冷发布了新的文献求助10
13秒前
CipherSage应助msp采纳,获得10
14秒前
14秒前
领导范儿应助小明采纳,获得10
20秒前
陆一完成签到 ,获得积分10
20秒前
xu发布了新的文献求助10
21秒前
大个应助柍踏采纳,获得10
22秒前
科研通AI6.1应助王先生采纳,获得10
23秒前
24秒前
26秒前
26秒前
rwq完成签到 ,获得积分10
27秒前
哦哦哦发布了新的文献求助10
28秒前
wab完成签到,获得积分0
29秒前
jimskylxk发布了新的文献求助10
29秒前
研友_VZG7GZ应助柍踏采纳,获得10
31秒前
bobokan应助义气翩跹采纳,获得10
31秒前
文慧发布了新的文献求助10
33秒前
共享精神应助苗条煎饼采纳,获得10
33秒前
34秒前
36秒前
宋芽芽u完成签到 ,获得积分0
36秒前
我爱科研完成签到 ,获得积分10
37秒前
小二郎应助bruna采纳,获得10
38秒前
倪鱼发布了新的文献求助10
39秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958