已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Adjacent Segment Disease at Preoperative MRI for Cervical Radiculopathy

医学 四分位间距 神经外科 神经组阅片室 麦克内马尔试验 神经放射学家 放射科 磁共振成像 回顾性队列研究 现行程序术语 外科 神经学 数学 统计 精神科
作者
Caroline M.W. Goedmakers,Asad M. Lak,Akiro H. Duey,Alexander W. Senko,Omar Arnaout,Michael W. Groff,Timothy R. Smith,Carmen L. A. Vleggeert‐Lankamp,Hasan A. Zaidi,Aakanksha Rana,Alessandro Boaro
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (3): 664-671 被引量:12
标识
DOI:10.1148/radiol.2021204731
摘要

Background Patients who undergo surgery for cervical radiculopathy are at risk for developing adjacent segment disease (ASD). Identifying patients who will develop ASD remains challenging for clinicians. Purpose To develop and validate a deep learning algorithm capable of predicting ASD by using only preoperative cervical MRI in patients undergoing single-level anterior cervical diskectomy and fusion (ACDF). Materials and Methods In this Health Insurance Portability and Accountability Act-compliant study, retrospective chart review was performed for 1244 patients undergoing single-level ACDF in two tertiary care centers. After application of inclusion and exclusion criteria, 344 patients were included, of whom 60% (n = 208) were used for training and 40% for validation (n = 43) and testing (n = 93). A deep learning-based prediction model with 48 convolutional layers was designed and trained by using preoperative T2-sagittal cervical MRI. To validate model performance, a neuroradiologist and neurosurgeon independently provided ASD predictions for the test set. Validation metrics included accuracy, areas under the curve, and F1 scores. The difference in proportion of wrongful predictions between the model and clinician was statistically tested by using the McNemar test. Results A total of 344 patients (median age, 48 years; interquartile range, 41-58 years; 182 women) were evaluated. The model predicted ASD on the 93 test images with an accuracy of 88 of 93 (95%; 95% CI: 90, 99), sensitivity of 12 of 15 (80%; 95% CI: 60, 100), and specificity of 76 of 78 (97%; 95% CI: 94, 100). The neuroradiologist and neurosurgeon provided predictions with lower accuracy (54 of 93; 58%; 95% CI: 48, 68), sensitivity (nine of 15; 60%; 95% CI: 35, 85), and specificity (45 of 78; 58%; 95% CI: 56, 77) compared with the algorithm. The McNemar test on the contingency table demonstrated that the proportion of wrongful predictions was significantly lower by the model (test statistic, 2.000; P < .001). Conclusion A deep learning algorithm that used only preoperative cervical T2-weighted MRI outperformed clinical experts at predicting adjacent segment disease in patients undergoing surgery for cervical radiculopathy. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on September 22, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slycmd发布了新的文献求助10
刚刚
ranj完成签到,获得积分10
2秒前
俊逸的篮球完成签到,获得积分10
2秒前
太清完成签到,获得积分10
11秒前
12秒前
13秒前
田様应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
zxt应助科研通管家采纳,获得20
14秒前
24秒前
Tree_完成签到 ,获得积分10
25秒前
后陡门爱神完成签到 ,获得积分10
26秒前
26秒前
lumu完成签到,获得积分10
30秒前
30秒前
AAA111122完成签到,获得积分10
31秒前
wupa给wupa的求助进行了留言
36秒前
38秒前
40秒前
492357816完成签到,获得积分10
41秒前
guan完成签到,获得积分20
42秒前
不安毛豆发布了新的文献求助10
44秒前
香蕉觅云应助dongdoctor采纳,获得20
44秒前
上善若水呦完成签到,获得积分10
45秒前
不安毛豆完成签到,获得积分10
55秒前
HonestLiang完成签到,获得积分10
56秒前
56秒前
1分钟前
1分钟前
张张完成签到 ,获得积分10
1分钟前
科研吗喽完成签到,获得积分10
1分钟前
1分钟前
小星完成签到,获得积分10
1分钟前
兴奋元灵完成签到 ,获得积分10
1分钟前
guan发布了新的文献求助80
1分钟前
ouleoule发布了新的文献求助10
1分钟前
无花果应助科研吗喽采纳,获得10
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207671
求助须知:如何正确求助?哪些是违规求助? 2856984
关于积分的说明 8108052
捐赠科研通 2522565
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602