清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning for Adjacent Segment Disease at Preoperative MRI for Cervical Radiculopathy

医学 四分位间距 神经外科 神经组阅片室 麦克内马尔试验 神经放射学家 放射科 磁共振成像 回顾性队列研究 现行程序术语 外科 神经学 数学 统计 精神科
作者
Caroline M.W. Goedmakers,Asad M. Lak,Akiro H. Duey,Alexander W. Senko,Omar Arnaout,Michael W. Groff,Timothy R. Smith,Carmen L. A. Vleggeert‐Lankamp,Hasan A. Zaidi,Aakanksha Rana,Alessandro Boaro
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (3): 664-671 被引量:12
标识
DOI:10.1148/radiol.2021204731
摘要

Background Patients who undergo surgery for cervical radiculopathy are at risk for developing adjacent segment disease (ASD). Identifying patients who will develop ASD remains challenging for clinicians. Purpose To develop and validate a deep learning algorithm capable of predicting ASD by using only preoperative cervical MRI in patients undergoing single-level anterior cervical diskectomy and fusion (ACDF). Materials and Methods In this Health Insurance Portability and Accountability Act-compliant study, retrospective chart review was performed for 1244 patients undergoing single-level ACDF in two tertiary care centers. After application of inclusion and exclusion criteria, 344 patients were included, of whom 60% (n = 208) were used for training and 40% for validation (n = 43) and testing (n = 93). A deep learning-based prediction model with 48 convolutional layers was designed and trained by using preoperative T2-sagittal cervical MRI. To validate model performance, a neuroradiologist and neurosurgeon independently provided ASD predictions for the test set. Validation metrics included accuracy, areas under the curve, and F1 scores. The difference in proportion of wrongful predictions between the model and clinician was statistically tested by using the McNemar test. Results A total of 344 patients (median age, 48 years; interquartile range, 41-58 years; 182 women) were evaluated. The model predicted ASD on the 93 test images with an accuracy of 88 of 93 (95%; 95% CI: 90, 99), sensitivity of 12 of 15 (80%; 95% CI: 60, 100), and specificity of 76 of 78 (97%; 95% CI: 94, 100). The neuroradiologist and neurosurgeon provided predictions with lower accuracy (54 of 93; 58%; 95% CI: 48, 68), sensitivity (nine of 15; 60%; 95% CI: 35, 85), and specificity (45 of 78; 58%; 95% CI: 56, 77) compared with the algorithm. The McNemar test on the contingency table demonstrated that the proportion of wrongful predictions was significantly lower by the model (test statistic, 2.000; P < .001). Conclusion A deep learning algorithm that used only preoperative cervical T2-weighted MRI outperformed clinical experts at predicting adjacent segment disease in patients undergoing surgery for cervical radiculopathy. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on September 22, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2520完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
16秒前
碳土不凡完成签到 ,获得积分10
27秒前
qiuqiu发布了新的文献求助10
42秒前
nojego完成签到,获得积分10
54秒前
冰凌心恋完成签到,获得积分10
57秒前
qiuqiu完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
张张发布了新的文献求助10
1分钟前
小新小新完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
CipherSage应助张张采纳,获得10
2分钟前
风中不斜完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
oldcat96发布了新的文献求助10
2分钟前
所所应助oldcat96采纳,获得10
2分钟前
安琪琪完成签到 ,获得积分10
3分钟前
努力退休小博士完成签到 ,获得积分10
3分钟前
3分钟前
心想柿橙发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
跳跃的鹏飞完成签到 ,获得积分10
4分钟前
心想柿橙完成签到,获得积分10
4分钟前
科研通AI2S应助风中不斜采纳,获得10
4分钟前
婼汐完成签到 ,获得积分10
4分钟前
4分钟前
甜蜜发带完成签到 ,获得积分0
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
简因完成签到 ,获得积分10
6分钟前
6分钟前
Becky完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
桥西小河完成签到 ,获得积分10
7分钟前
胡可完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008397
求助须知:如何正确求助?哪些是违规求助? 3548131
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209