Series DC Arc Fault Detection Using Machine Learning Algorithms

电弧故障断路器 弧(几何) 断层(地质) 电力系统 算法 计算机科学 功率(物理) 故障检测与隔离 系列(地层学) 控制理论(社会学) 电压 人工智能 电气工程 数学 工程类 短路 几何学 执行机构 地震学 控制(管理) 古生物学 地质学 物理 生物 量子力学
作者
Hoang-Long Dang,Jae-Chang Kim,Sangshin Kwak,Seungdeog Choi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 133346-133364 被引量:43
标识
DOI:10.1109/access.2021.3115512
摘要

The wide variety of arc faults induced by different load types renders residential series arc fault detection complicated and challenging. Series dc arc faults could cause fire accidents and adversely affect power systems if not promptly detected. However, in practical power systems, they are difficult to detect because of a low arc current, absence of a zero-crossing period, and various abnormal behavior based on different types of power loads and controllers. In particular, conventional protection fuses may not be activated when they occur. Undetected arc faults could cause false operation of power systems and potentially lead to damage to property and human casualties. Therefore, it is imperative to develop a detection system for series arc faults in DC systems for the reliable and efficient operation of such systems. In this study, several typical loads, especially nonlinear and complex loads such as power electronic loads, were chosen and analyzed, and five time-domain parameters of the current—average value, median value, variance value, RMS value, and distance of the maximum and minimum values—were chosen for arc fault detection. Various machine learning algorithms were used for arc fault detection and their detection accuracies were compared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小马甲应助陈晨采纳,获得10
1秒前
细腻曼冬发布了新的文献求助10
2秒前
weiwei发布了新的文献求助10
2秒前
2秒前
虚心的岩完成签到,获得积分10
3秒前
5秒前
Lucas应助zzcres采纳,获得10
5秒前
6秒前
虚心的岩发布了新的文献求助10
6秒前
fugdu发布了新的文献求助10
9秒前
zm发布了新的文献求助10
9秒前
传奇3应助冷酷的丁丁采纳,获得10
9秒前
EVER完成签到 ,获得积分10
11秒前
包破茧完成签到,获得积分10
11秒前
pcr163应助huiyou2采纳,获得50
13秒前
duzhi完成签到 ,获得积分10
14秒前
fugdu完成签到,获得积分10
15秒前
小马甲应助李李李采纳,获得10
15秒前
俭朴涫发布了新的文献求助10
15秒前
hehe发布了新的文献求助10
15秒前
星辰大海应助虚心的岩采纳,获得20
17秒前
核桃应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
洁净的半鬼完成签到,获得积分20
18秒前
量子星尘发布了新的文献求助10
19秒前
Summer完成签到 ,获得积分10
19秒前
20秒前
IyGnauH完成签到 ,获得积分10
20秒前
21秒前
139完成签到 ,获得积分0
22秒前
22秒前
慕青应助张成协采纳,获得10
23秒前
Owen应助激动的煎饼采纳,获得10
23秒前
musen完成签到,获得积分10
24秒前
清玖发布了新的文献求助10
24秒前
sx完成签到,获得积分10
24秒前
化学天空完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511