Graph Convolutional Multi-modal Hashing for Flexible Multimedia Retrieval

计算机科学 散列函数 图形 特征哈希 通用哈希 判别式 模态(人机交互) 双重哈希 模式识别(心理学) 人工智能 哈希表 理论计算机科学 计算机安全
作者
Xu Lu,Lei Zhu,Li Liu,Liqiang Nie,Huaxiang Zhang
标识
DOI:10.1145/3474085.3475598
摘要

Multi-modal hashing makes an important contribution to multimedia retrieval, where a key challenge is to encode heterogeneous modalities into compact hash codes. To solve this dilemma, graph-based multi-modal hashing methods generally define individual affinity matrix of each independent modality and apply linear algorithm for heterogeneous modalities fusion and compact hash learning. Several other methods construct graph Laplacian matrix based on semantic information to help learn discriminative hash code. However, these conventional methods roughly ignore the structural similarity of training set and the complex relations among multi-modal samples, which leads to unsatisfactory complementarity of fused hash codes. More notably, they are faced with two other important problems: huge computing and storage costs caused by graph construction and partial modality feature lost problem when incomplete query sample comes. In this paper, we propose a Flexible Graph Convolutional Multi-modal Hashing (FGCMH) method that adopts GCNs with linear complexity to preserve both the modality-individual and modality-fused structural similarity for discriminative hash learning. Necessarily, accurate multimedia retrieval can be performed on complete and incomplete datasets with our method. Specifically, multiple modality-individual GCNs under semantic guidance are proposed to act on each individual modality independently for intra-modality similarity preserving, then the output representations are fused into a fusion graph with adaptive weighting scheme. Hash GCN and semantic GCN, which share parameters in the first two layers, propagate fusion information and generate hash codes under high-level label space supervision. In the query stage, our method adaptively captures various multi-modal contents in a flexible and robust way, even if partial modality features are lost. Experimental results on three publicly datasets show the flexibility and effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范1完成签到,获得积分10
刚刚
3秒前
胡方伟完成签到,获得积分20
11秒前
Ran完成签到 ,获得积分10
12秒前
研友_VZG7GZ应助渔婆采纳,获得10
13秒前
13秒前
Jodie发布了新的文献求助50
15秒前
胡方伟发布了新的文献求助10
15秒前
熙20团宝儿完成签到,获得积分10
16秒前
科研通AI6应助gfbh采纳,获得10
17秒前
Water完成签到,获得积分10
19秒前
19秒前
Seven完成签到 ,获得积分10
21秒前
22秒前
HE完成签到,获得积分10
27秒前
NexusExplorer应助zzj-zjut采纳,获得10
34秒前
34秒前
科研通AI6应助hoy采纳,获得10
34秒前
xiaotianli完成签到,获得积分10
35秒前
希望天下0贩的0应助Wqian采纳,获得10
35秒前
耶椰发布了新的文献求助10
38秒前
郭生完成签到,获得积分10
39秒前
BowieHuang应助HuiYmao采纳,获得10
41秒前
41秒前
zzj-zjut完成签到,获得积分10
42秒前
文静水绿完成签到,获得积分10
43秒前
DNA完成签到,获得积分10
44秒前
容容容完成签到,获得积分10
45秒前
shmorby发布了新的文献求助10
46秒前
渔婆发布了新的文献求助10
47秒前
在水一方应助阳光的梦寒采纳,获得10
49秒前
科研通AI6应助hoy采纳,获得10
50秒前
标致的幼菱完成签到,获得积分10
51秒前
失眠的香菇完成签到 ,获得积分10
52秒前
汉堡包应助专注的水壶采纳,获得10
53秒前
56秒前
57秒前
58秒前
Felix完成签到,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566