Multi-label Pattern Image Retrieval via Attention Mechanism Driven Graph Convolutional Network

计算机科学 判别式 视觉文字 图形 图像自动标注 图像检索 卷积神经网络 语义学(计算机科学) 人工智能 模式识别(心理学) 图像(数学) 理论计算机科学 程序设计语言
作者
Ying Li,Hongwei Zhou,Yeyu Yin,Jiaquan Gao
出处
期刊:ACM Multimedia 被引量:8
标识
DOI:10.1145/3474085.3475695
摘要

Pattern images are artificially designed images which are discriminative in aspects of elements, styles, arrangements and so on. Pattern images are widely used in fields like textile, clothing, art, fashion and graphic design. With the growth of image numbers, pattern image retrieval has great potential in commercial applications and industrial production. However, most of existing content-based image retrieval works mainly focus on describing simple attributes with clear conceptual boundaries, which are not suitable for pattern image retrieval. It is difficult to accurately represent and retrieve pattern images which include complex details and multiple elements. Therefore, in this paper, we collect a new pattern image dataset with multiple labels per image for the pattern image retrieval task. To extract discriminative semantic features of multi-label pattern images and construct high-level topology relationships between features, we further propose an Attention Mechanism Driven Graph Convolutional Network (AMD-GCN). Different layers of the multi-semantic attention module activate regions of interest corresponding to multiple labels, respectively. By embedding the learned labels from attention module into the graph convolutional network, which can capture the dependency of labels on the graph manifold, the AMD-GCN builds an end-to-end framework to extract high-level semantic features with label semantics and inner relationships for retrieval. Experiments on the pattern image dataset show that the proposed method highlights the relevant semantic regions of multiple labels, and achieves higher accuracy than state-of-the-art image retrieval methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ding应助欣喜寻云采纳,获得10
1秒前
1秒前
刻苦冰颜完成签到,获得积分10
2秒前
共享精神应助糟糕的立辉采纳,获得10
2秒前
2秒前
铁观音完成签到,获得积分10
2秒前
项脊轩发布了新的文献求助10
2秒前
chen发布了新的文献求助10
2秒前
Superman完成签到 ,获得积分10
3秒前
kingwill发布了新的文献求助20
3秒前
文艺乐蕊完成签到,获得积分10
3秒前
3秒前
simon发布了新的文献求助10
4秒前
牛牛牛完成签到,获得积分10
4秒前
情怀应助M先生采纳,获得10
4秒前
5秒前
可口可乐完成签到,获得积分10
5秒前
Kw完成签到,获得积分10
5秒前
6秒前
6秒前
春江完成签到 ,获得积分10
6秒前
yi发布了新的文献求助10
6秒前
HI完成签到 ,获得积分10
7秒前
赵赵完成签到,获得积分20
7秒前
jaya发布了新的文献求助80
7秒前
allglitters完成签到,获得积分10
7秒前
搞怪的一江完成签到,获得积分10
7秒前
lxy完成签到,获得积分10
8秒前
科研小秦完成签到,获得积分10
8秒前
丘比特应助银银采纳,获得10
8秒前
9秒前
9秒前
9秒前
lan完成签到 ,获得积分10
9秒前
赵赵发布了新的文献求助10
9秒前
Ava应助孙五六采纳,获得10
9秒前
别闹闹发布了新的文献求助10
9秒前
猛磕CO2的小生完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953707
求助须知:如何正确求助?哪些是违规求助? 3499536
关于积分的说明 11096135
捐赠科研通 3230090
什么是DOI,文献DOI怎么找? 1785865
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801479