亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Post-reconstruction attenuation correction for SPECT myocardium perfusion imaging facilitated by deep learning-based attenuation map generation

衰减 衰减校正 扫描仪 基本事实 核医学 迭代重建 医学 投影(关系代数) Spect成像 人工智能 单光子发射计算机断层摄影术 计算机科学 物理 算法 光学
作者
Hui Liu,Jing Wu,Luyao Shi,Yaqiang Liu,Edward J. Miller,Albert J. Sinusas,Yi-Hwa Liu,Chi Liu
出处
期刊:Journal of Nuclear Cardiology [Springer Nature]
卷期号:29 (6): 2881-2892 被引量:14
标识
DOI:10.1007/s12350-021-02817-1
摘要

Attenuation correction can improve the quantitative accuracy of single-photon emission computed tomography (SPECT) images. Existing SPECT-only systems normally can only provide non-attenuation corrected (NC) images which are susceptible to attenuation artifacts. In this work, we developed a post-reconstruction attenuation correction (PRAC) approach facilitated by a deep learning-based attenuation map for myocardial perfusion SPECT imaging. In the PRAC method, new projection data were estimated via forwardly projecting the scanner-generated NC image. Then an attenuation map, generated from NC image using a pretrained deep learning (DL) convolutional neural network, was incorporated into an offline reconstruction algorithm to obtain the attenuation-corrected images from the forwardly projected projections. We evaluated the PRAC method using 30 subjects with a DL network trained with 40 subjects, using the vendor-generated AC images and CT-based attenuation maps as the ground truth. The PRAC methods using DL-generated and CT-based attenuation maps were both highly consistent with the scanner-generated AC image. The globally normalized mean absolute errors were 1.1% ± .6% and .7% ± .4% and the localized absolute percentage errors were 8.9% ± 13.4% and 7.8% ± 11.4% in the left ventricular (LV) blood pool, respectively, and − 1.3% ± 8.0% and − 3.8% ± 4.5% in the LV myocardium for PRAC methods using DL-generated and CT-based attenuation maps, respectively. The summed stress scores after PRAC using both attenuation maps were more consistent with the ground truth than those of the NC images. We developed a PRAC approach facilitated by deep learning-based attenuation maps for SPECT myocardial perfusion imaging. It may be feasible for this approach to provide AC images for SPECT-only scanner data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eva发布了新的文献求助10
10秒前
划落落完成签到 ,获得积分10
23秒前
王乐多完成签到,获得积分10
33秒前
斯文败类应助自信迎天采纳,获得20
40秒前
41秒前
Owen应助你求我一下采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
1分钟前
zqq完成签到,获得积分0
2分钟前
垚祎完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Zcccjy完成签到 ,获得积分10
2分钟前
2分钟前
小迪完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
平常远山发布了新的文献求助10
3分钟前
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
小黄发布了新的文献求助30
3分钟前
你求我一下完成签到,获得积分20
3分钟前
大个应助平常远山采纳,获得10
3分钟前
zxy发布了新的文献求助10
3分钟前
鳗鱼厉发布了新的文献求助10
4分钟前
MS903完成签到 ,获得积分10
4分钟前
Jasper应助橙子采纳,获得10
4分钟前
CJW完成签到 ,获得积分10
4分钟前
堆起的石头完成签到,获得积分10
4分钟前
子平完成签到 ,获得积分10
4分钟前
鳗鱼厉发布了新的文献求助10
4分钟前
zxy应助MIMI采纳,获得10
4分钟前
4分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054368
关于积分的说明 9041835
捐赠科研通 2743703
什么是DOI,文献DOI怎么找? 1505155
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864