Prediction of postoperative visual acuity after vitrectomy for macular hole using deep learning–based artificial intelligence

玻璃体切除术 医学 光学相干层析成像 视力 眼科 多元统计 贝叶斯多元线性回归 线性回归 外科 数学 统计
作者
Shumpei Obata,Yusuke Ichiyama,Masashi Kakinoki,Osamu Sawada,Yoshitsugu Saishin,Taku Ito,Mari Tomioka,Masahito Ohji
出处
期刊:Graefes Archive for Clinical and Experimental Ophthalmology [Springer Nature]
卷期号:260 (4): 1113-1123 被引量:7
标识
DOI:10.1007/s00417-021-05427-2
摘要

To create a model for prediction of postoperative visual acuity (VA) after vitrectomy for macular hole (MH) treatment using preoperative optical coherence tomography (OCT) images, using deep learning (DL)-based artificial intelligence.This was a retrospective single-center study. We evaluated 259 eyes that underwent vitrectomy for MHs. We divided the eyes into four groups, based on their 6-month postoperative Snellen VA values: (A) ≥ 20/20; (B) 20/25-20/32; (C) 20/32-20/63; and (D) ≤ 20/100. Training data were randomly selected, comprising 20 eyes in each group. Test data were also randomly selected, comprising 52 total eyes in the same proportions as those of each group in the total database. Preoperative OCT images with corresponding postoperative VA values were used to train the original DL network. The final prediction of postoperative VA was subjected to regression analysis based on inferences made with DL network output. We created a model for predicting postoperative VA from preoperative VA, MH size, and age using multivariate linear regression. Precision values were determined, and correlation coefficients between predicted and actual postoperative VA values were calculated in two models.The DL and multivariate models had precision values of 46% and 40%, respectively. The predicted postoperative VA values on the basis of DL and on preoperative VA and MH size were correlated with actual postoperative VA at 6 months postoperatively (P < .0001 and P < .0001, r = .62 and r = .55, respectively).Postoperative VA after MH treatment could be predicted via DL using preoperative OCT images with greater accuracy than multivariate linear regression using preoperative VA, MH size, and age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
七里野草完成签到,获得积分10
刚刚
善学以致用应助安谢采纳,获得10
1秒前
1秒前
BBBB小拳头完成签到,获得积分10
2秒前
Miaochen发布了新的文献求助10
2秒前
zwd发布了新的文献求助10
2秒前
失眠店员发布了新的文献求助10
2秒前
3秒前
方芳芳完成签到,获得积分20
3秒前
阔达的盼海完成签到,获得积分10
4秒前
Lucas应助xk采纳,获得10
5秒前
机智的胖达完成签到,获得积分10
5秒前
薄荷小姐发布了新的文献求助10
5秒前
义气的钥匙完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
灵感大王喵完成签到 ,获得积分10
6秒前
SJAW发布了新的文献求助20
6秒前
义气初之完成签到,获得积分20
7秒前
7秒前
纯情的馒头完成签到,获得积分10
7秒前
华仔应助zwd采纳,获得10
8秒前
8秒前
nani完成签到,获得积分10
8秒前
Miaochen完成签到,获得积分10
8秒前
chen完成签到 ,获得积分10
9秒前
上官若男应助cc采纳,获得10
9秒前
蜂蜜完成签到,获得积分10
9秒前
甜甜冰双发布了新的文献求助10
10秒前
swiftie完成签到,获得积分10
10秒前
淡然的香薇完成签到,获得积分10
10秒前
11秒前
xxl完成签到 ,获得积分10
11秒前
淡淡的若冰应助mayberichard采纳,获得10
12秒前
憨憨芸完成签到,获得积分10
12秒前
愉快明杰完成签到,获得积分10
13秒前
颖宝老公完成签到,获得积分0
13秒前
14秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3208180
求助须知:如何正确求助?哪些是违规求助? 2857694
关于积分的说明 8111864
捐赠科研通 2523214
什么是DOI,文献DOI怎么找? 1356505
科研通“疑难数据库(出版商)”最低求助积分说明 642411
邀请新用户注册赠送积分活动 613834