Prediction of postoperative visual acuity after vitrectomy for macular hole using deep learning–based artificial intelligence

玻璃体切除术 医学 光学相干层析成像 视力 眼科 多元统计 人工智能 外科 数学 计算机科学 统计
作者
Shumpei Obata,Yusuke Ichiyama,Masashi Kakinoki,Osamu Sawada,Yoshitsugu Saishin,Taku Ito,Mari Tomioka,Masahito Ohji
出处
期刊:Graefes Archive for Clinical and Experimental Ophthalmology [Springer Nature]
卷期号:260 (4): 1113-1123 被引量:23
标识
DOI:10.1007/s00417-021-05427-2
摘要

To create a model for prediction of postoperative visual acuity (VA) after vitrectomy for macular hole (MH) treatment using preoperative optical coherence tomography (OCT) images, using deep learning (DL)-based artificial intelligence.This was a retrospective single-center study. We evaluated 259 eyes that underwent vitrectomy for MHs. We divided the eyes into four groups, based on their 6-month postoperative Snellen VA values: (A) ≥ 20/20; (B) 20/25-20/32; (C) 20/32-20/63; and (D) ≤ 20/100. Training data were randomly selected, comprising 20 eyes in each group. Test data were also randomly selected, comprising 52 total eyes in the same proportions as those of each group in the total database. Preoperative OCT images with corresponding postoperative VA values were used to train the original DL network. The final prediction of postoperative VA was subjected to regression analysis based on inferences made with DL network output. We created a model for predicting postoperative VA from preoperative VA, MH size, and age using multivariate linear regression. Precision values were determined, and correlation coefficients between predicted and actual postoperative VA values were calculated in two models.The DL and multivariate models had precision values of 46% and 40%, respectively. The predicted postoperative VA values on the basis of DL and on preoperative VA and MH size were correlated with actual postoperative VA at 6 months postoperatively (P < .0001 and P < .0001, r = .62 and r = .55, respectively).Postoperative VA after MH treatment could be predicted via DL using preoperative OCT images with greater accuracy than multivariate linear regression using preoperative VA, MH size, and age.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Benji完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
汉堡包应助简柠采纳,获得10
3秒前
3秒前
科目三应助星期天采纳,获得10
4秒前
真云完成签到,获得积分10
4秒前
6秒前
adinike发布了新的文献求助10
7秒前
科研通AI6应助愚林2024采纳,获得10
7秒前
科研通AI6应助Fortune采纳,获得10
8秒前
邱乐乐发布了新的文献求助10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
李健的小迷弟应助东新采纳,获得10
11秒前
星期天完成签到,获得积分10
12秒前
13秒前
chao完成签到,获得积分10
14秒前
科研通AI6应助JY采纳,获得10
14秒前
笑看小旭旭完成签到,获得积分20
17秒前
幽默书瑶完成签到 ,获得积分10
17秒前
17秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
17秒前
852应助78888采纳,获得10
17秒前
星期天发布了新的文献求助10
17秒前
桐桐应助张瑜采纳,获得10
18秒前
邓茗予完成签到,获得积分20
18秒前
水雾发布了新的文献求助10
18秒前
Lucas应助禹宛白采纳,获得10
19秒前
19秒前
吴先生完成签到,获得积分10
20秒前
20秒前
jin_0124发布了新的文献求助10
20秒前
21秒前
冯雅婷完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802