材料科学
延展性(地球科学)
位错
高熵合金
透射电子显微镜
变形(气象学)
合金
复合材料
纳米技术
蠕动
作者
Yeqiang Bu,Yuan Wu,Zhifeng Lei,Xiaoyuan Yuan,Hong‐Hui Wu,Xiaobin Feng,Jiabin Liu,Jun Ding,Yang Lü,Hongtao Wang,Zhaoping Lü,Wei Yang
标识
DOI:10.1016/j.mattod.2021.02.022
摘要
High-entropy alloys (HEAs) open up a new horizon for discovering un-explored mechanical properties and deformation mechanisms. Local chemical fluctuations (LCFs) in HEAs were found to have significant influences on their mechanical performance, however, the underlying origins remain unclear. In this work, direct dynamic observation of the interaction between LCFs and dislocations was captured by in situ transmission electron microscopy in a ductile body-centered-cubic (BCC) HfNbTiZr HEA under loading. The observed dislocation pinning induced by LCFs contributes to the increment not only in the strength but also in the ductility due to strongly promoted dislocation interaction. The observed local double cross-slips caused by the LCFs distribute dislocations onto various atomic planes homogenously, which is also beneficial for ductilization in HfNbTiZr. Our findings not only shed light on the understanding of deformation mechanisms of HEAs, but also provide a new perspective to design ductile BCC HEAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI