Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering

材料科学 催化作用 压电 降级(电信) 环境友好型 纳米技术 化学工程 可重用性 罗丹明B 形态学(生物学) 罗丹明 纳米线 纳米颗粒 制氢 复合材料 化学 有机化学 计算机科学 光催化 工程类 生态学 物理 荧光 生物 电信 程序设计语言 量子力学 软件 遗传学
作者
Chengye Yu,Mengxi Tan,Yang Li,Chuanbao Liu,Ruowei Yin,Huimin Meng,Yanjing Su,Lijie Qiao,Yang Bai
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:596: 288-296 被引量:121
标识
DOI:10.1016/j.jcis.2021.03.040
摘要

Piezocatalysis, converting mechanical vibration into chemical energy, is an emerging technology to address environmental issues. In this work, we propose an efficient method to significantly improve the piezocatalytic activity by morphology engineering rather than composition design. The catalytic property in BaTiO3 nanocrystallites with diverse morphologies is investigated by dye degradation and hydrogen production under ultrasonic vibration. The BaTiO3 nanosheets exhibit an excellent piezocatalytic activity with a degradation rate of 0.1279 min−1 for Rhodamine B, far beyond those in previous piezocatalytic literature and even comparable to excellent photocatalysts, and also a high hydrogen production rate of 92 μmol g−1 h−1. Compared with nanowires and nanoparticles, the 2D morphology greatly enhances the piezocatalytic activity in nanosheets owing to much larger piezoelectric potential. This proves that the piezocatalytic property is dominated by the morphology-dependent piezoelectricity, rather than specific surface area as other catalysis. Dominated by bending vibrating mode, the piezocatalytic activity reaches a maximum at the piezoelectric resonating frequency, and it increases with the ultrasonic power. Moreover, it has good reusability and wide versatility for catalytic degradation. This work gives an in-depth understanding of piezocatalytic mechanism and provides a way to develop high performance and eco-friendly piezocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
思源应助lemon 1118采纳,获得30
5秒前
5秒前
wanci应助竺七采纳,获得10
8秒前
小蘑菇应助超级亿先采纳,获得10
9秒前
xm发布了新的文献求助10
9秒前
NexusExplorer应助yy采纳,获得10
10秒前
Syh关注了科研通微信公众号
10秒前
11秒前
zy发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
15秒前
15秒前
16秒前
Chloe发布了新的文献求助30
17秒前
shgd完成签到,获得积分10
17秒前
李j1发布了新的文献求助20
17秒前
lemon 1118发布了新的文献求助30
19秒前
端庄芾发布了新的文献求助10
19秒前
20秒前
21秒前
唯爱林发布了新的文献求助10
21秒前
zhonglv7应助Chloe采纳,获得10
21秒前
21秒前
重重发布了新的文献求助30
22秒前
永远有多远完成签到,获得积分10
22秒前
赘婿应助yes采纳,获得10
23秒前
23秒前
小二发布了新的文献求助10
26秒前
26秒前
罗先生完成签到,获得积分10
27秒前
lele关注了科研通微信公众号
28秒前
29秒前
29秒前
充电宝应助科研通管家采纳,获得10
31秒前
烤冷面应助科研通管家采纳,获得20
32秒前
华仔应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113