Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering

材料科学 催化作用 压电 降级(电信) 环境友好型 纳米技术 化学工程 可重用性 罗丹明B 形态学(生物学) 罗丹明 纳米线 纳米颗粒 制氢 复合材料 化学 有机化学 计算机科学 光催化 工程类 生态学 物理 荧光 生物 电信 程序设计语言 量子力学 软件 遗传学
作者
Chengye Yu,Mengxi Tan,Yang Li,Chuanbao Liu,Ruowei Yin,Huimin Meng,Yanjing Su,Lijie Qiao,Yang Bai
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:596: 288-296 被引量:150
标识
DOI:10.1016/j.jcis.2021.03.040
摘要

Piezocatalysis, converting mechanical vibration into chemical energy, is an emerging technology to address environmental issues. In this work, we propose an efficient method to significantly improve the piezocatalytic activity by morphology engineering rather than composition design. The catalytic property in BaTiO3 nanocrystallites with diverse morphologies is investigated by dye degradation and hydrogen production under ultrasonic vibration. The BaTiO3 nanosheets exhibit an excellent piezocatalytic activity with a degradation rate of 0.1279 min−1 for Rhodamine B, far beyond those in previous piezocatalytic literature and even comparable to excellent photocatalysts, and also a high hydrogen production rate of 92 μmol g−1 h−1. Compared with nanowires and nanoparticles, the 2D morphology greatly enhances the piezocatalytic activity in nanosheets owing to much larger piezoelectric potential. This proves that the piezocatalytic property is dominated by the morphology-dependent piezoelectricity, rather than specific surface area as other catalysis. Dominated by bending vibrating mode, the piezocatalytic activity reaches a maximum at the piezoelectric resonating frequency, and it increases with the ultrasonic power. Moreover, it has good reusability and wide versatility for catalytic degradation. This work gives an in-depth understanding of piezocatalytic mechanism and provides a way to develop high performance and eco-friendly piezocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Whisper完成签到 ,获得积分10
1秒前
1秒前
老实的安阳完成签到,获得积分20
1秒前
1秒前
1秒前
_ban发布了新的文献求助10
2秒前
隋尚洁完成签到 ,获得积分10
2秒前
2秒前
研友_VZG7GZ应助阿桔采纳,获得10
3秒前
雪落你看不见完成签到,获得积分10
3秒前
3秒前
怕黑凝海完成签到,获得积分10
4秒前
4秒前
4秒前
你好完成签到,获得积分20
4秒前
5秒前
577发布了新的文献求助10
5秒前
赘婿应助小蚂蚁采纳,获得10
6秒前
双丁宝贝发布了新的文献求助10
6秒前
kking发布了新的文献求助10
7秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
zilt1109发布了新的文献求助10
8秒前
YsGao应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
大龙哥886应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
YsGao应助科研通管家采纳,获得10
8秒前
ccm应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
七七完成签到,获得积分10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588437
求助须知:如何正确求助?哪些是违规求助? 4671534
关于积分的说明 14787623
捐赠科研通 4625353
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314