Detection and Correspondence Matching of Corneal Reflections for Eye Tracking Using Deep Learning

计算机视觉 人工智能 计算机科学 眼动 凝视 BitTorrent跟踪器 国际空间站的视线跟踪 旋转(数学) 光学 物理
作者
Soumil Chugh,Braiden Brousseau,Jonathan Rose,Moshe Eizenman
标识
DOI:10.1109/icpr48806.2021.9412066
摘要

Eye tracking systems that estimate the point-of-gaze are essential in extended reality (XR) systems as they enable new interaction paradigms and technological improvements. It is important for these systems to maintain accuracy when the headset moves relative to the head (known as device slippage) due to head movements or user adjustment. One of the most accurate eye tracking techniques, which is also insensitive to shifts of the system relative to the head, uses two or more infrared (IR) light emitting diodes to illuminate the eye and an IR camera to capture images of the eye. An essential step in estimating the point-of-gaze in these systems is the precise determination of the location of two or more corneal reflections (virtual images of the IR-LEDs that illuminate the eye) in images of the eye. Eye trackers tend to have multiple light sources to ensure at least one pair of reflections for each gaze position. The use of multiple light sources introduces a difficult problem: the need to match the corneal reflections with the corresponding light source over the range of expected eye movements. Corneal reflection detection and matching often fail in XR systems due to the proximity of camera and steep illumination angles of light sources with respect to the eye. The failures are caused by corneal reflections having varying shape and intensity levels or disappearance due to rotation of the eye, or the presence of spurious reflections. We have developed a fully convolutional neural network, based on the UNET architecture, that solves the detection and matching problem in the presence of spurious and missing reflections. Eye images of 25 people were collected in a virtual reality headset using a binocular eye tracking module consisting of five infrared light sources per eye. A set of 4,000 eye images were manually labelled for each of the corneal reflections, and data augmentation was used to generate a dataset of 40,000 images. The network is able to correctly identify and match 91% of corneal reflections present in the test set. This is comparable to a state-of-the-art deep learning system, but our approach requires 33 times less memory and executes 10 times faster. The proposed algorithm, when used in an eye tracker in a VR system, achieved an average mean absolute gaze error of 1°. This is a significant improvement over the state-of-the-art learning-based XR eye tracking systems that have reported gaze errors of 2-3°.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
刚刚
lxy应助Pluto采纳,获得10
1秒前
1秒前
小橘发布了新的文献求助10
2秒前
充电宝应助花花采纳,获得30
2秒前
芒果完成签到,获得积分10
4秒前
哈哈王子完成签到,获得积分10
5秒前
张成发布了新的文献求助10
5秒前
FashionBoy应助陈小小采纳,获得10
5秒前
清浅完成签到,获得积分10
6秒前
6秒前
xyq发布了新的文献求助10
6秒前
酷波er应助HC3采纳,获得10
7秒前
听话的捕发布了新的文献求助10
7秒前
daladidala完成签到,获得积分10
9秒前
scq发布了新的文献求助10
10秒前
星辰大海应助余鱼鱼采纳,获得10
11秒前
充电宝应助Nicho采纳,获得10
12秒前
科研牛马完成签到,获得积分10
13秒前
魔幻柜子完成签到,获得积分10
13秒前
13秒前
隐形芹发布了新的文献求助10
13秒前
YuanbinMao应助Reftro采纳,获得30
14秒前
ZO完成签到,获得积分20
14秒前
一一完成签到,获得积分10
15秒前
16秒前
所所应助嘴巴张大一点采纳,获得10
16秒前
刘潼潼发布了新的文献求助10
16秒前
张成完成签到,获得积分10
18秒前
隐形芹完成签到,获得积分10
18秒前
19秒前
19秒前
8R60d8应助听话的捕采纳,获得10
21秒前
daladidala发布了新的文献求助10
21秒前
ZO发布了新的文献求助10
22秒前
不吃香菜发布了新的文献求助10
23秒前
CipherSage应助王青青采纳,获得10
23秒前
24秒前
Owen应助monly采纳,获得10
24秒前
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228715
求助须知:如何正确求助?哪些是违规求助? 2876473
关于积分的说明 8195167
捐赠科研通 2543670
什么是DOI,文献DOI怎么找? 1373912
科研通“疑难数据库(出版商)”最低求助积分说明 646868
邀请新用户注册赠送积分活动 621453