Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气高丽完成签到 ,获得积分10
2秒前
4秒前
5秒前
科研通AI2S应助jerrymomoko采纳,获得10
7秒前
7秒前
第一感觉发布了新的文献求助10
8秒前
WangHY发布了新的文献求助10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得30
10秒前
peili应助jyy采纳,获得20
10秒前
10秒前
不见花绚丽完成签到,获得积分10
10秒前
12秒前
mikasa完成签到,获得积分10
13秒前
怕黑盼山完成签到,获得积分10
20秒前
二队淼队长完成签到,获得积分10
23秒前
华仔应助jindou采纳,获得10
27秒前
31秒前
36秒前
布噜布噜应助含蓄访梦采纳,获得10
39秒前
39秒前
sure发布了新的文献求助10
41秒前
可可完成签到,获得积分10
42秒前
48秒前
lhhhh完成签到 ,获得积分10
48秒前
Maple0808完成签到 ,获得积分10
50秒前
Ldq发布了新的文献求助30
52秒前
sure完成签到,获得积分10
54秒前
可靠的公爵熊完成签到,获得积分10
55秒前
57秒前
58秒前
MG_XSJ完成签到,获得积分10
59秒前
59秒前
lalaheilala完成签到 ,获得积分10
1分钟前
悦悦发布了新的文献求助10
1分钟前
KK发布了新的文献求助10
1分钟前
科研通AI2S应助杨青月采纳,获得10
1分钟前
1分钟前
李火火火完成签到,获得积分10
1分钟前
小洪俊熙发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3370467
求助须知:如何正确求助?哪些是违规求助? 2989086
关于积分的说明 8733718
捐赠科研通 2672039
什么是DOI,文献DOI怎么找? 1463810
科研通“疑难数据库(出版商)”最低求助积分说明 677315
邀请新用户注册赠送积分活动 668542