Human action recognition using attention based LSTM network with dilated CNN features

计算机科学 Softmax函数 判别式 人工智能 卷积神经网络 模式识别(心理学) 帧(网络) 人工神经网络 机器学习 电信
作者
Khan Muhammad,Mustaqeem Khan,Amin Ullah,Ali Shariq Imran,Muhammad Sajjad,Mustafa Servet Kıran,Giovanna Sannino,Victor Hugo C. de Albuquerque
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:125: 820-830 被引量:158
标识
DOI:10.1016/j.future.2021.06.045
摘要

Human action recognition in videos is an active area of research in computer vision and pattern recognition. Nowadays, artificial intelligence (AI) based systems are needed for human-behavior assessment and security purposes. The existing action recognition techniques are mainly using pre-trained weights of different AI architectures for the visual representation of video frames in the training stage, which affect the features’ discrepancy determination, such as the distinction between the visual and temporal signs. To address this issue, we propose a bi-directional long short-term memory (BiLSTM) based attention mechanism with a dilated convolutional neural network (DCNN) that selectively focuses on effective features in the input frame to recognize the different human actions in the videos. In this diverse network, we use the DCNN layers to extract the salient discriminative features by using the residual blocks to upgrade the features that keep more information than a shallow layer. Furthermore, we feed these features into a BiLSTM to learn the long-term dependencies, which is followed by the attention mechanism to boost the performance and extract the additional high-level selective action related patterns and cues. We further use the center loss with Softmax to improve the loss function that achieves a higher performance in the video-based action classification. The proposed system is evaluated on three benchmarks, i.e., UCF11, UCF sports, and J-HMDB datasets for which it achieved a recognition rate of 98.3%, 99.1%, and 80.2%, respectively, showing 1%–3% improvement compared to the state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
佛祖祝我早日毕业应助neil采纳,获得10
1秒前
李健的小迷弟应助小先生采纳,获得10
1秒前
小敏发布了新的文献求助10
2秒前
任晴完成签到,获得积分10
2秒前
紫色的云发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
陈青桃完成签到,获得积分20
4秒前
Eleanor完成签到,获得积分10
5秒前
Meredith应助因一采纳,获得10
5秒前
5秒前
Jasper应助詩翰采纳,获得10
5秒前
动听文轩发布了新的文献求助10
6秒前
8秒前
Juyi发布了新的文献求助20
8秒前
李健的小迷弟应助小敏采纳,获得10
8秒前
Chaw发布了新的文献求助10
9秒前
9秒前
所所应助紫色的云采纳,获得10
10秒前
10秒前
见青山发布了新的文献求助10
12秒前
12秒前
12秒前
心灵美水蜜桃完成签到,获得积分10
13秒前
NickName完成签到,获得积分10
13秒前
贺艳芳发布了新的文献求助10
14秒前
14秒前
15秒前
小梦完成签到,获得积分10
16秒前
16秒前
Dopamine完成签到,获得积分10
16秒前
17秒前
。。。完成签到,获得积分10
17秒前
大意的绿蓉完成签到,获得积分10
17秒前
Meredith应助了又柳采纳,获得20
18秒前
Lachs发布了新的文献求助10
18秒前
脑洞疼应助时光采纳,获得10
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627