Human action recognition using attention based LSTM network with dilated CNN features

计算机科学 Softmax函数 判别式 人工智能 卷积神经网络 模式识别(心理学) 帧(网络) 人工神经网络 机器学习 电信
作者
Khan Muhammad,Mustaqeem Khan,Amin Ullah,Ali Shariq Imran,Muhammad Sajjad,Mustafa Servet Kıran,Giovanna Sannino,Victor Hugo C. de Albuquerque
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:125: 820-830 被引量:158
标识
DOI:10.1016/j.future.2021.06.045
摘要

Human action recognition in videos is an active area of research in computer vision and pattern recognition. Nowadays, artificial intelligence (AI) based systems are needed for human-behavior assessment and security purposes. The existing action recognition techniques are mainly using pre-trained weights of different AI architectures for the visual representation of video frames in the training stage, which affect the features’ discrepancy determination, such as the distinction between the visual and temporal signs. To address this issue, we propose a bi-directional long short-term memory (BiLSTM) based attention mechanism with a dilated convolutional neural network (DCNN) that selectively focuses on effective features in the input frame to recognize the different human actions in the videos. In this diverse network, we use the DCNN layers to extract the salient discriminative features by using the residual blocks to upgrade the features that keep more information than a shallow layer. Furthermore, we feed these features into a BiLSTM to learn the long-term dependencies, which is followed by the attention mechanism to boost the performance and extract the additional high-level selective action related patterns and cues. We further use the center loss with Softmax to improve the loss function that achieves a higher performance in the video-based action classification. The proposed system is evaluated on three benchmarks, i.e., UCF11, UCF sports, and J-HMDB datasets for which it achieved a recognition rate of 98.3%, 99.1%, and 80.2%, respectively, showing 1%–3% improvement compared to the state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yifan92完成签到,获得积分10
刚刚
1秒前
灵巧的孤容完成签到,获得积分10
2秒前
袁翰将军发布了新的文献求助10
2秒前
a雪橙完成签到 ,获得积分10
4秒前
超帅的碱完成签到,获得积分10
4秒前
5秒前
陈大海完成签到,获得积分20
5秒前
LaTeXer给积极行天的求助进行了留言
5秒前
白斯特完成签到,获得积分10
6秒前
科研混子完成签到,获得积分10
6秒前
听雨完成签到 ,获得积分10
6秒前
jianglili完成签到 ,获得积分10
6秒前
思源应助王云骢采纳,获得10
7秒前
等待的航空完成签到 ,获得积分10
8秒前
顾矜应助乔安采纳,获得10
8秒前
雪ノ下詩乃完成签到,获得积分10
9秒前
神外之城发布了新的文献求助80
9秒前
科研人完成签到,获得积分10
11秒前
莫友安完成签到 ,获得积分10
11秒前
大个应助迅速曼冬采纳,获得10
12秒前
热心市民小红花应助阿湫采纳,获得10
13秒前
快乐战神没烦恼完成签到,获得积分10
13秒前
顾矜应助魏莱采纳,获得10
13秒前
SYLH应助Rollei采纳,获得10
13秒前
14秒前
dd完成签到,获得积分20
14秒前
刻苦羽毛完成签到,获得积分10
15秒前
小粒橙完成签到 ,获得积分10
16秒前
lulu完成签到,获得积分10
19秒前
凤里完成签到 ,获得积分10
19秒前
星辰大海应助虹虹采纳,获得10
19秒前
22秒前
22秒前
cassie完成签到,获得积分10
22秒前
兴奋的乐巧完成签到,获得积分10
23秒前
jia完成签到,获得积分10
25秒前
马某关注了科研通微信公众号
25秒前
完美诺言发布了新的文献求助10
25秒前
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048