已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Human action recognition using attention based LSTM network with dilated CNN features

计算机科学 Softmax函数 判别式 人工智能 卷积神经网络 模式识别(心理学) 帧(网络) 人工神经网络 机器学习 电信
作者
Khan Muhammad,Mustaqeem Khan,Amin Ullah,Ali Shariq Imran,Muhammad Sajjad,Mustafa Servet Kıran,Giovanna Sannino,Victor Hugo C. de Albuquerque
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:125: 820-830 被引量:158
标识
DOI:10.1016/j.future.2021.06.045
摘要

Human action recognition in videos is an active area of research in computer vision and pattern recognition. Nowadays, artificial intelligence (AI) based systems are needed for human-behavior assessment and security purposes. The existing action recognition techniques are mainly using pre-trained weights of different AI architectures for the visual representation of video frames in the training stage, which affect the features’ discrepancy determination, such as the distinction between the visual and temporal signs. To address this issue, we propose a bi-directional long short-term memory (BiLSTM) based attention mechanism with a dilated convolutional neural network (DCNN) that selectively focuses on effective features in the input frame to recognize the different human actions in the videos. In this diverse network, we use the DCNN layers to extract the salient discriminative features by using the residual blocks to upgrade the features that keep more information than a shallow layer. Furthermore, we feed these features into a BiLSTM to learn the long-term dependencies, which is followed by the attention mechanism to boost the performance and extract the additional high-level selective action related patterns and cues. We further use the center loss with Softmax to improve the loss function that achieves a higher performance in the video-based action classification. The proposed system is evaluated on three benchmarks, i.e., UCF11, UCF sports, and J-HMDB datasets for which it achieved a recognition rate of 98.3%, 99.1%, and 80.2%, respectively, showing 1%–3% improvement compared to the state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
白桦林泪完成签到,获得积分10
2秒前
yangzai完成签到 ,获得积分10
3秒前
5秒前
自然千山完成签到,获得积分10
5秒前
Augusterny完成签到 ,获得积分10
6秒前
YBR完成签到 ,获得积分10
7秒前
hellokitty发布了新的文献求助10
8秒前
白桦林泪发布了新的文献求助20
8秒前
8秒前
懵懂的冰凡完成签到,获得积分10
9秒前
知足的憨人丫丫完成签到,获得积分10
9秒前
不吃汉堡完成签到 ,获得积分10
12秒前
13秒前
13秒前
xx完成签到 ,获得积分10
15秒前
17秒前
乐乐乐乐乐乐应助duohao2023采纳,获得30
17秒前
18秒前
lizigongzhu发布了新的文献求助10
19秒前
20秒前
None完成签到 ,获得积分10
20秒前
Ania99完成签到 ,获得积分10
20秒前
liuyue发布了新的文献求助10
22秒前
sunchengcehng发布了新的文献求助10
22秒前
zzyuyu完成签到 ,获得积分10
26秒前
xiaojia0501发布了新的文献求助10
26秒前
sunchengcehng完成签到,获得积分10
28秒前
和谐蛋蛋完成签到,获得积分10
30秒前
安逸的蓝白鸡汤完成签到,获得积分20
35秒前
liuyue完成签到,获得积分20
36秒前
小凯完成签到 ,获得积分10
37秒前
41秒前
41秒前
phospho完成签到,获得积分10
42秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216