Diagnostic accuracy of a novel artificial intelligence system for adenoma detection in daily practice: a prospective nonrandomized comparative study

医学 结肠镜检查 内窥镜检查 麦克内马尔试验 置信区间 腺瘤 结直肠癌 内科学 胃肠病学 前瞻性队列研究 外科 癌症 数学 统计
作者
Carolin Zippelius,Saleh A. Alqahtani,Jörg Schedel,D. Brookman-Amissah,Klaus Muehlenberg,Christoph Federle,Andrea Salzberger,W. Schorr,Oliver Pech
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:54 (05): 465-472 被引量:24
标识
DOI:10.1055/a-1556-5984
摘要

Adenoma detection rate (ADR) varies significantly between endoscopists, with adenoma miss rates (AMRs) up to 26 %. Artificial intelligence (AI) systems may improve endoscopy quality and reduce the rate of interval cancer. We evaluated the efficacy of an AI system in real-time colonoscopy and its influence on AMR and ADR.This prospective, nonrandomized, comparative study analyzed patients undergoing diagnostic colonoscopy at a single endoscopy center in Germany from June to October 2020. Every patient was examined concurrently by an endoscopist and AI using two opposing screens. The AI system, overseen by a second observer, was not visible to the endoscopist. AMR was the primary outcome. Both methods were compared using McNemar test.150 patients were included (mean age 65 years [standard deviation 14]; 69 women). There was no significant or clinically relevant difference (P = 0.75) in AMR between the AI system (6/197, 3.0 %; 95 % confidence interval [CI] 1.1-6.5) and routine colonoscopy (4/197, 2.0 %; 95 %CI 0.6-5.1). The polyp miss rate of the AI system (14/311, 4.5 %; 95 %CI 2.5-7.4) was not significantly different (P = 0.72) from routine colonoscopy (17/311, 5.5 %; 95 %CI 3.2-8.6). There was no significant difference (P = 0.50) in ADR between routine colonoscopy (78/150, 52.0 %; 95 %CI 43.7-60.2) and the AI system (76/150, 50.7 %; 95 %CI 42.4-58.9). Routine colonoscopy detected adenomas in two patients that were missed by the AI system.The AI system performance was comparable to that of experienced endoscopists during real-time colonoscopy with similar high ADR (> 50 %).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
janan33发布了新的文献求助10
1秒前
VVZD发布了新的文献求助10
1秒前
1秒前
小晴空完成签到,获得积分10
1秒前
隐形曼青应助100采纳,获得10
1秒前
WindChaser发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助10
2秒前
sule完成签到,获得积分10
2秒前
天天快乐应助Jackson_Cai采纳,获得10
2秒前
月半战戈完成签到,获得积分10
3秒前
阿拉发布了新的文献求助10
4秒前
蛐蛐完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
上官若男应助跳跳虎采纳,获得10
6秒前
7秒前
深情安青应助姚夏采纳,获得10
7秒前
浮游应助zhenxing采纳,获得10
7秒前
东山发布了新的文献求助10
8秒前
qc应助C0NTIG0采纳,获得30
8秒前
烟花应助休息日采纳,获得10
9秒前
9秒前
9秒前
传奇3应助zhx采纳,获得30
9秒前
杨雪完成签到,获得积分10
10秒前
可乐可口完成签到,获得积分10
10秒前
10秒前
10秒前
yunny发布了新的文献求助20
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
哭泣乌发布了新的文献求助10
12秒前
XiangQin关注了科研通微信公众号
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503