Diagnostic accuracy of a novel artificial intelligence system for adenoma detection in daily practice: a prospective nonrandomized comparative study

医学 结肠镜检查 内窥镜检查 麦克内马尔试验 置信区间 腺瘤 结直肠癌 内科学 胃肠病学 前瞻性队列研究 外科 癌症 数学 统计
作者
Carolin Zippelius,Saleh A. Alqahtani,J Schedel,D. Brookman-Amissah,Klaus Muehlenberg,Christoph Federle,Andrea Salzberger,W. Schorr,Oliver Pech
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:54 (05): 465-472 被引量:21
标识
DOI:10.1055/a-1556-5984
摘要

Adenoma detection rate (ADR) varies significantly between endoscopists, with adenoma miss rates (AMRs) up to 26 %. Artificial intelligence (AI) systems may improve endoscopy quality and reduce the rate of interval cancer. We evaluated the efficacy of an AI system in real-time colonoscopy and its influence on AMR and ADR.This prospective, nonrandomized, comparative study analyzed patients undergoing diagnostic colonoscopy at a single endoscopy center in Germany from June to October 2020. Every patient was examined concurrently by an endoscopist and AI using two opposing screens. The AI system, overseen by a second observer, was not visible to the endoscopist. AMR was the primary outcome. Both methods were compared using McNemar test.150 patients were included (mean age 65 years [standard deviation 14]; 69 women). There was no significant or clinically relevant difference (P = 0.75) in AMR between the AI system (6/197, 3.0 %; 95 % confidence interval [CI] 1.1-6.5) and routine colonoscopy (4/197, 2.0 %; 95 %CI 0.6-5.1). The polyp miss rate of the AI system (14/311, 4.5 %; 95 %CI 2.5-7.4) was not significantly different (P = 0.72) from routine colonoscopy (17/311, 5.5 %; 95 %CI 3.2-8.6). There was no significant difference (P = 0.50) in ADR between routine colonoscopy (78/150, 52.0 %; 95 %CI 43.7-60.2) and the AI system (76/150, 50.7 %; 95 %CI 42.4-58.9). Routine colonoscopy detected adenomas in two patients that were missed by the AI system.The AI system performance was comparable to that of experienced endoscopists during real-time colonoscopy with similar high ADR (> 50 %).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
充电宝应助sunoopp采纳,获得10
1秒前
江姜酱先生完成签到,获得积分10
2秒前
隐形曼青应助标致小翠采纳,获得10
2秒前
酷波er应助ff采纳,获得10
3秒前
语亦菲扬921完成签到,获得积分10
4秒前
4秒前
6秒前
vvv完成签到 ,获得积分10
6秒前
CSUST科研一哥应助木木采纳,获得20
6秒前
小白果果完成签到,获得积分10
7秒前
bella完成签到,获得积分10
7秒前
NCS杀手完成签到,获得积分10
9秒前
VDC应助随便采纳,获得20
9秒前
10秒前
whimsyhui发布了新的文献求助10
11秒前
STZHEN完成签到,获得积分10
11秒前
11秒前
汉堡包应助潇洒的煜采纳,获得10
12秒前
12秒前
12秒前
师大刘德华完成签到 ,获得积分10
14秒前
16秒前
勤恳的元绿完成签到,获得积分10
17秒前
17秒前
17秒前
标致小翠发布了新的文献求助10
17秒前
研友_nvGy2Z发布了新的文献求助10
19秒前
小蘑菇应助Huaaash采纳,获得10
19秒前
19秒前
泡菜鱼完成签到 ,获得积分10
19秒前
Wu发布了新的文献求助10
20秒前
ZZUWSX给ZZUWSX的求助进行了留言
20秒前
20秒前
20秒前
科研通AI2S应助傻傻采纳,获得10
21秒前
Akim应助傻傻采纳,获得10
21秒前
adeno发布了新的文献求助10
22秒前
海棠发布了新的文献求助10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625