Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients

列线图 医学 无线电技术 胶质瘤 肿瘤科 内科学 核医学 放射科 癌症研究
作者
Jing Yan,Bin Zhang,Shuaitong Zhang,Jingliang Cheng,Xianzhi Liu,Weiwei Wang,Yang Dong,Lu Zhang,Xiaokai Mo,Justin Chen,Fang Jin,Fei Wang,Jie Tian,Shuixing Zhang,Zhenyu Zhang
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:5 (1) 被引量:51
标识
DOI:10.1038/s41698-021-00205-z
摘要

Abstract Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZaZa完成签到,获得积分10
1秒前
1秒前
周小鱼完成签到,获得积分10
2秒前
2秒前
万能图书馆应助怕黑南琴采纳,获得10
3秒前
CipherSage应助lxlx采纳,获得10
4秒前
xiaowang完成签到,获得积分10
5秒前
5秒前
心魔完成签到,获得积分10
6秒前
7秒前
轻松狗完成签到,获得积分10
7秒前
小蘑菇应助狂飙的蛋采纳,获得10
7秒前
8秒前
dd姐发布了新的文献求助10
8秒前
斯文败类应助xieyujie采纳,获得10
8秒前
放放完成签到,获得积分10
9秒前
苏尔琳诺完成签到,获得积分10
10秒前
妖孽宇完成签到,获得积分10
10秒前
zz完成签到 ,获得积分20
11秒前
JamesPei应助Wdw2236采纳,获得10
11秒前
科目三应助精明的海露采纳,获得10
12秒前
妖孽宇发布了新的文献求助10
13秒前
荼蘼完成签到,获得积分10
14秒前
忆灵完成签到 ,获得积分10
15秒前
乐乐应助journey_qq采纳,获得10
15秒前
科研通AI5应助啦啦啦啦啦采纳,获得10
16秒前
16秒前
科研通AI5应助幸福大白采纳,获得10
18秒前
科研通AI5应助幸福大白采纳,获得30
18秒前
英姑应助waoller1采纳,获得10
21秒前
21秒前
子卿完成签到,获得积分0
21秒前
9℃完成签到 ,获得积分10
21秒前
FashionBoy应助小七2022采纳,获得10
25秒前
25秒前
choshuenco完成签到,获得积分10
26秒前
xieyujie发布了新的文献求助10
26秒前
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
Andrew Duncan Senior: Physician of the Enlightenment 240
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3689058
求助须知:如何正确求助?哪些是违规求助? 3238641
关于积分的说明 9836318
捐赠科研通 2950705
什么是DOI,文献DOI怎么找? 1618114
邀请新用户注册赠送积分活动 764839
科研通“疑难数据库(出版商)”最低求助积分说明 738889