Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion

人工智能 计算机科学 乳腺超声检查 特征(语言学) 模式识别(心理学) 图像融合 深度学习 乳腺癌 人工神经网络 计算机视觉 图像(数学) 癌症 医学 乳腺摄影术 语言学 哲学 内科学
作者
Zhemin Zhuang,Zengbiao Yang,Alex Noel Joseph Raj,Chuliang Wei,Pengcheng Jin,Shuxin Zhuang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:208: 106221-106221 被引量:63
标识
DOI:10.1016/j.cmpb.2021.106221
摘要

Breast cancer is a fatal threat to the health of women. Ultrasonography is a common method for the detection of breast cancer. Computer-aided diagnosis of breast ultrasound images can help doctors in diagnosing benign and malignant lesions. In this paper, by combining image decomposition and fusion techniques with adaptive spatial feature fusion technology, a reliable classification method for breast ultrasound images of tumors is proposed. First, fuzzy enhancement and bilateral filtering algorithms are used to process the original breast ultrasound image. Then, various decomposition images representing the clinical characteristics of breast tumors are obtained using the original and mask images. By considering the diversity of the benign and malignant characteristic information represented by each decomposition image, the decomposition images are fused through the RGB channel, and three types of fusion images are generated. Then, from a series of candidate deep learning models, transfer learning is used to select the best model as the base model to extract deep learning features. Finally, while training the classification network, adaptive spatial feature fusion technology is used to train the weight network to complete deep learning feature fusion and classification. In this study, 1328 breast ultrasound images were collected for training and testing. The experimental results show that the values of accuracy, precision, specificity, sensitivity/recall, F1 score, and area under the curve of the proposed method were 0.9548, 0.9811, 0.9833, 0.9392, 0.9571, and 0.9883, respectively. Our research can automate breast cancer detection and has strong clinical utility. When compared to previous methods, our proposed method is expected to be more effective while assisting doctors in diagnosing breast ultrasound images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
干羞花完成签到,获得积分10
3秒前
酷波er应助gyl采纳,获得10
4秒前
研友_pnxEqZ完成签到,获得积分10
6秒前
Ava应助Zbre采纳,获得10
7秒前
whl_321发布了新的文献求助10
7秒前
benben应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
FIN应助科研通管家采纳,获得30
9秒前
9秒前
benben应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
heavenhorse应助科研通管家采纳,获得20
9秒前
传奇3应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
12秒前
13秒前
13秒前
RivedroiteLynn完成签到 ,获得积分10
14秒前
nczpf2010发布了新的文献求助10
15秒前
研友_pnxEqZ发布了新的文献求助10
17秒前
ZYQ发布了新的文献求助10
18秒前
领导范儿应助whl_321采纳,获得10
19秒前
19秒前
橙汁完成签到 ,获得积分10
19秒前
葉要加油完成签到,获得积分10
20秒前
葉要加油发布了新的文献求助10
23秒前
weishen完成签到,获得积分0
25秒前
25秒前
ZYQ完成签到,获得积分10
26秒前
852应助liyanping采纳,获得10
27秒前
28秒前
28秒前
Lanyx完成签到,获得积分10
29秒前
29秒前
29秒前
30秒前
Eason完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578