Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion

人工智能 计算机科学 乳腺超声检查 特征(语言学) 模式识别(心理学) 图像融合 深度学习 乳腺癌 人工神经网络 计算机视觉 图像(数学) 癌症 医学 乳腺摄影术 哲学 内科学 语言学
作者
Zhemin Zhuang,Zengbiao Yang,Alex Noel Joseph Raj,Chuliang Wei,Pengcheng Jin,Shuxin Zhuang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:208: 106221-106221 被引量:63
标识
DOI:10.1016/j.cmpb.2021.106221
摘要

Breast cancer is a fatal threat to the health of women. Ultrasonography is a common method for the detection of breast cancer. Computer-aided diagnosis of breast ultrasound images can help doctors in diagnosing benign and malignant lesions. In this paper, by combining image decomposition and fusion techniques with adaptive spatial feature fusion technology, a reliable classification method for breast ultrasound images of tumors is proposed. First, fuzzy enhancement and bilateral filtering algorithms are used to process the original breast ultrasound image. Then, various decomposition images representing the clinical characteristics of breast tumors are obtained using the original and mask images. By considering the diversity of the benign and malignant characteristic information represented by each decomposition image, the decomposition images are fused through the RGB channel, and three types of fusion images are generated. Then, from a series of candidate deep learning models, transfer learning is used to select the best model as the base model to extract deep learning features. Finally, while training the classification network, adaptive spatial feature fusion technology is used to train the weight network to complete deep learning feature fusion and classification. In this study, 1328 breast ultrasound images were collected for training and testing. The experimental results show that the values of accuracy, precision, specificity, sensitivity/recall, F1 score, and area under the curve of the proposed method were 0.9548, 0.9811, 0.9833, 0.9392, 0.9571, and 0.9883, respectively. Our research can automate breast cancer detection and has strong clinical utility. When compared to previous methods, our proposed method is expected to be more effective while assisting doctors in diagnosing breast ultrasound images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮书竹完成签到,获得积分10
刚刚
刚刚
咪呀完成签到,获得积分10
刚刚
科研通AI2S应助lzb采纳,获得10
刚刚
燕尔蓝完成签到,获得积分10
刚刚
顾矜应助zhaoyizhaoyi采纳,获得10
1秒前
冯晓静完成签到 ,获得积分10
1秒前
gavinppp发布了新的文献求助10
2秒前
舒夜完成签到,获得积分10
2秒前
Lucas应助积极方盒采纳,获得30
2秒前
Huang完成签到,获得积分10
3秒前
Ryan完成签到,获得积分10
3秒前
3秒前
haru完成签到,获得积分10
4秒前
4秒前
5秒前
Owen应助deanna采纳,获得10
5秒前
5秒前
wanci应助好吃的蛋挞采纳,获得10
6秒前
了解完成签到,获得积分10
7秒前
hhw完成签到,获得积分10
7秒前
研友_VZG7GZ应助daker采纳,获得10
7秒前
gongranpi完成签到,获得积分10
7秒前
8秒前
英姑应助Lynn采纳,获得10
8秒前
弘木发布了新的文献求助10
9秒前
Maisie完成签到,获得积分10
12秒前
科研通AI2S应助研友_8Y26PL采纳,获得10
12秒前
AprilLeung完成签到 ,获得积分10
13秒前
NexusExplorer应助南北采纳,获得10
13秒前
WENBO完成签到,获得积分10
13秒前
enen发布了新的文献求助30
14秒前
赘婿应助健康的半仙采纳,获得10
14秒前
Ldq完成签到 ,获得积分10
14秒前
zoe驳回了今后应助
14秒前
可爱的沛珊完成签到 ,获得积分10
15秒前
15秒前
doxiao发布了新的文献求助10
15秒前
echo完成签到,获得积分10
16秒前
弘木完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567