Multi‐Path Electron Transfer in 1D Double‐Shelled Sn@Mo2C/C Tubes with Enhanced Dielectric Loss for Boosting Microwave Absorption Performance

材料科学 电介质 微波食品加热 消散 反射损耗 介电损耗 光电子学 电容 耗散因子 同轴 容量损失 复合材料 纳米技术 复合数 电化学 电极 电气工程 量子力学 化学 物理 物理化学 热力学 工程类
作者
Xiang Qian,Yahui Zhang,Zhengchen Wu,Ruixian Zhang,Xiaohui Li,Min Wang,Renchao Che
出处
期刊:Small [Wiley]
卷期号:17 (30): e2100283-e2100283 被引量:78
标识
DOI:10.1002/smll.202100283
摘要

Abstract 1D tubular micro‐nano structural materials have been attracting extensive attention in the microwave absorption (MA) field for their anisotropy feature, outstanding impedance matching, and electromagnetic energy loss capability. Herein, unique double‐shelled Sn@Mo 2 C/C tubes with porous Sn inner layer and 2D Mo 2 C/C outer layer are successfully designed and synthesized via a dual‐template method. The composites possess favorable MA performance with an effective absorption bandwidth of 6.76 GHz and a maximum reflection loss value of −52.1 dB. Specifically, the rational and appropriate construction of Sn@Mo 2 C/C tubes promotes the multi‐path electron transfer in the composites to optimize the dielectric constant and consequently to enhance the capacity of electromagnetic wave energy dissipation. Three mechanisms dominate the MA process: i) the conductive loss resulted from the rapid electron transmission due to the novel 1D hollow coaxial multi‐shelled structure, especially the metallic Sn inner layer; ii) the polarization loss caused by abundant heterogeneous interfaces of Sn‐Mo 2 C/C and Mo 2 CC from the precise double‐shelled structure; iii) the capacitor‐like loss by the potential difference between Mo 2 C/C nanosheets. This work hereby sheds light on the design of the 1D hierarchical structure and lays out a profound insight into the MA mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金2022完成签到,获得积分10
刚刚
hrk完成签到,获得积分10
刚刚
刚刚
1351567822应助旦皋采纳,获得50
刚刚
1秒前
无极微光应助白英采纳,获得20
1秒前
1秒前
1秒前
嘭嘭嘭发布了新的文献求助20
2秒前
2秒前
彭于晏应助开心紫安采纳,获得10
2秒前
3秒前
3秒前
mmiww完成签到,获得积分10
3秒前
3秒前
宝可梦大师完成签到,获得积分10
4秒前
啦啦啦完成签到,获得积分10
4秒前
yoowt发布了新的文献求助10
4秒前
cnyyp发布了新的文献求助10
4秒前
小蘑菇应助山木采纳,获得10
4秒前
5秒前
6秒前
6秒前
XMY147305完成签到,获得积分10
7秒前
7秒前
安白发布了新的文献求助10
7秒前
梦二完成签到 ,获得积分10
7秒前
8秒前
8秒前
爱吃蜂蜜发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
Wonderland完成签到,获得积分10
10秒前
10秒前
余繁发布了新的文献求助10
10秒前
10秒前
失眠的汽车完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665315
求助须知:如何正确求助?哪些是违规求助? 4875879
关于积分的说明 15112944
捐赠科研通 4824400
什么是DOI,文献DOI怎么找? 2582734
邀请新用户注册赠送积分活动 1536689
关于科研通互助平台的介绍 1495315