An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning

差别隐私 计算机科学 杠杆(统计) 推论 数据挖掘 原始数据 对手 信息隐私 联合学习 机器学习 人工智能 算法 计算机安全 程序设计语言
作者
Xue Yang,Yan Feng,Weijun Fang,Jun Shao,Xiaohu Tang,Shu-Tao Xia,Rongxing Lu
标识
DOI:10.1145/3485447.3512233
摘要

Although federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data, the adversary still can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks. To defend against such privacy attacks, many noises perturbed methods (like differential privacy or CountSketch matrix) have been widely designed. However, the strong defence ability and high learning accuracy of these schemes cannot be ensured at the same time, which will impede the wide application of FL in practice (especially for medical or financial institutions that require both high accuracy and strong privacy guarantee). To overcome this issue, we propose an efficient model perturbation method for federated learning to defend against reconstruction and membership inference attacks launched by curious clients. On the one hand, similar to the differential privacy, our method also selects random numbers as perturbed noises added to the global model parameters, and thus it is very efficient and easy to be integrated in practice. Meanwhile, the random selected noises are positive real numbers and the corresponding value can be arbitrarily large, and thus the strong defence ability can be ensured. On the other hand, unlike differential privacy or other perturbation methods that cannot eliminate added noises, our method allows the server to recover the true aggregated gradients by eliminating the added noises. Therefore, our method does not hinder learning accuracy at all. Extensive experiments demonstrate that for both regression and classification tasks, our method achieves the same accuracy as non-private approaches and outperforms the state-of-the-art defence schemes. Besides, the defence ability of our method against reconstruction and membership inference attack is significantly better than the state-of-the-art related defence schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抹茶味的奶酥完成签到,获得积分10
1秒前
11111111完成签到,获得积分10
1秒前
科目三应助乾乾采纳,获得10
2秒前
2秒前
云洲完成签到,获得积分10
2秒前
2秒前
Noldor完成签到,获得积分10
2秒前
我不到啊发布了新的文献求助10
2秒前
NexusExplorer应助十八采纳,获得10
3秒前
4秒前
喝一碗粥发布了新的文献求助10
4秒前
7秒前
8秒前
9秒前
羽毛发布了新的文献求助30
9秒前
Hello应助Jiayi采纳,获得10
9秒前
10秒前
jadexu完成签到,获得积分10
11秒前
11秒前
笛卡尔发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
乔木完成签到,获得积分20
14秒前
14秒前
深情安青应助土豪的严青采纳,获得10
14秒前
脑洞疼应助土豪的严青采纳,获得10
15秒前
15秒前
15秒前
小何发布了新的文献求助30
15秒前
舒服的从阳完成签到 ,获得积分10
15秒前
15秒前
铜锣烧完成签到 ,获得积分10
16秒前
18秒前
浮游应助Mcharleen采纳,获得10
18秒前
lin发布了新的文献求助10
18秒前
18秒前
fenghuo发布了新的文献求助10
18秒前
浮游应助xiaosu采纳,获得10
18秒前
李爱国应助n11采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271588
求助须知:如何正确求助?哪些是违规求助? 4429244
关于积分的说明 13787991
捐赠科研通 4307583
什么是DOI,文献DOI怎么找? 2363636
邀请新用户注册赠送积分活动 1359308
关于科研通互助平台的介绍 1322221