An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning

差别隐私 计算机科学 杠杆(统计) 推论 数据挖掘 原始数据 对手 信息隐私 联合学习 机器学习 人工智能 算法 计算机安全 程序设计语言
作者
Xue Yang,Yan Feng,Weijun Fang,Jun Shao,Xiaohu Tang,Shu-Tao Xia,Rongxing Lu
标识
DOI:10.1145/3485447.3512233
摘要

Although federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data, the adversary still can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks. To defend against such privacy attacks, many noises perturbed methods (like differential privacy or CountSketch matrix) have been widely designed. However, the strong defence ability and high learning accuracy of these schemes cannot be ensured at the same time, which will impede the wide application of FL in practice (especially for medical or financial institutions that require both high accuracy and strong privacy guarantee). To overcome this issue, we propose an efficient model perturbation method for federated learning to defend against reconstruction and membership inference attacks launched by curious clients. On the one hand, similar to the differential privacy, our method also selects random numbers as perturbed noises added to the global model parameters, and thus it is very efficient and easy to be integrated in practice. Meanwhile, the random selected noises are positive real numbers and the corresponding value can be arbitrarily large, and thus the strong defence ability can be ensured. On the other hand, unlike differential privacy or other perturbation methods that cannot eliminate added noises, our method allows the server to recover the true aggregated gradients by eliminating the added noises. Therefore, our method does not hinder learning accuracy at all. Extensive experiments demonstrate that for both regression and classification tasks, our method achieves the same accuracy as non-private approaches and outperforms the state-of-the-art defence schemes. Besides, the defence ability of our method against reconstruction and membership inference attack is significantly better than the state-of-the-art related defence schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DianaLee完成签到 ,获得积分10
2秒前
大个应助木木木采纳,获得10
2秒前
3秒前
美美桑内发布了新的文献求助10
3秒前
catherine发布了新的文献求助10
4秒前
袁璐发布了新的文献求助10
5秒前
6秒前
Jolin完成签到,获得积分10
6秒前
天天快乐应助西西采纳,获得10
6秒前
6秒前
Ares发布了新的文献求助10
8秒前
今后应助端庄的小蝴蝶采纳,获得10
8秒前
8秒前
8秒前
ZXCCXZ完成签到,获得积分20
9秒前
淡人发布了新的文献求助10
9秒前
10秒前
激昂的乐巧完成签到,获得积分10
10秒前
10秒前
lbq完成签到,获得积分10
10秒前
10秒前
10秒前
恭喜发布了新的文献求助10
10秒前
慕青应助锄大地采纳,获得10
10秒前
Akim应助sai采纳,获得10
11秒前
共享精神应助直率的大米采纳,获得10
11秒前
完美世界应助无私的妍采纳,获得10
11秒前
marvelou完成签到,获得积分10
12秒前
小蘑菇应助聪慧的醉易采纳,获得10
12秒前
13秒前
Ares完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
墨染发布了新的文献求助10
16秒前
思源应助Jerry采纳,获得10
16秒前
17秒前
17秒前
18秒前
SciGPT应助神途采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933345
求助须知:如何正确求助?哪些是违规求助? 4201607
关于积分的说明 13053837
捐赠科研通 3975580
什么是DOI,文献DOI怎么找? 2178495
邀请新用户注册赠送积分活动 1194810
关于科研通互助平台的介绍 1106195