An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning

差别隐私 计算机科学 杠杆(统计) 推论 数据挖掘 原始数据 对手 信息隐私 联合学习 机器学习 人工智能 算法 计算机安全 程序设计语言
作者
Xue Yang,Yan Feng,Weijun Fang,Jun Shao,Xiaohu Tang,Shu-Tao Xia,Rongxing Lu
标识
DOI:10.1145/3485447.3512233
摘要

Although federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data, the adversary still can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks. To defend against such privacy attacks, many noises perturbed methods (like differential privacy or CountSketch matrix) have been widely designed. However, the strong defence ability and high learning accuracy of these schemes cannot be ensured at the same time, which will impede the wide application of FL in practice (especially for medical or financial institutions that require both high accuracy and strong privacy guarantee). To overcome this issue, we propose an efficient model perturbation method for federated learning to defend against reconstruction and membership inference attacks launched by curious clients. On the one hand, similar to the differential privacy, our method also selects random numbers as perturbed noises added to the global model parameters, and thus it is very efficient and easy to be integrated in practice. Meanwhile, the random selected noises are positive real numbers and the corresponding value can be arbitrarily large, and thus the strong defence ability can be ensured. On the other hand, unlike differential privacy or other perturbation methods that cannot eliminate added noises, our method allows the server to recover the true aggregated gradients by eliminating the added noises. Therefore, our method does not hinder learning accuracy at all. Extensive experiments demonstrate that for both regression and classification tasks, our method achieves the same accuracy as non-private approaches and outperforms the state-of-the-art defence schemes. Besides, the defence ability of our method against reconstruction and membership inference attack is significantly better than the state-of-the-art related defence schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小白发布了新的文献求助10
刚刚
刚刚
coon发布了新的文献求助30
刚刚
仇剑封完成签到,获得积分10
1秒前
ccc发布了新的文献求助10
1秒前
大个应助葡萄爱吃荔枝采纳,获得10
1秒前
3秒前
高高可乐完成签到,获得积分20
3秒前
韩涵发布了新的文献求助10
3秒前
高会和发布了新的文献求助10
3秒前
直率冷之完成签到,获得积分20
4秒前
幽默平安发布了新的文献求助10
5秒前
5秒前
丘比特应助封尘逸动采纳,获得10
6秒前
6秒前
xinlixi完成签到,获得积分0
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
SYLH应助Chen采纳,获得10
7秒前
柯一一应助veggieg采纳,获得10
8秒前
柯一一应助veggieg采纳,获得10
8秒前
柯一一应助veggieg采纳,获得10
8秒前
柯一一应助veggieg采纳,获得10
8秒前
柯一一应助veggieg采纳,获得10
8秒前
高会和完成签到,获得积分10
9秒前
笑点低完成签到 ,获得积分10
9秒前
直率冷之发布了新的文献求助30
10秒前
Eva发布了新的文献求助10
10秒前
11秒前
mm发布了新的文献求助10
11秒前
11秒前
ccc完成签到,获得积分20
13秒前
斯文败类应助苏苏采纳,获得10
14秒前
qiqi77ya完成签到,获得积分10
15秒前
fox完成签到 ,获得积分10
15秒前
科目三应助开心之王采纳,获得10
15秒前
20秒前
weiwei完成签到,获得积分10
20秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226