An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning

差别隐私 计算机科学 杠杆(统计) 推论 数据挖掘 原始数据 对手 信息隐私 联合学习 机器学习 人工智能 算法 计算机安全 程序设计语言
作者
Xue Yang,Yan Feng,Weijun Fang,Jun Shao,Xiaohu Tang,Shu-Tao Xia,Rongxing Lu
标识
DOI:10.1145/3485447.3512233
摘要

Although federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data, the adversary still can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks. To defend against such privacy attacks, many noises perturbed methods (like differential privacy or CountSketch matrix) have been widely designed. However, the strong defence ability and high learning accuracy of these schemes cannot be ensured at the same time, which will impede the wide application of FL in practice (especially for medical or financial institutions that require both high accuracy and strong privacy guarantee). To overcome this issue, we propose an efficient model perturbation method for federated learning to defend against reconstruction and membership inference attacks launched by curious clients. On the one hand, similar to the differential privacy, our method also selects random numbers as perturbed noises added to the global model parameters, and thus it is very efficient and easy to be integrated in practice. Meanwhile, the random selected noises are positive real numbers and the corresponding value can be arbitrarily large, and thus the strong defence ability can be ensured. On the other hand, unlike differential privacy or other perturbation methods that cannot eliminate added noises, our method allows the server to recover the true aggregated gradients by eliminating the added noises. Therefore, our method does not hinder learning accuracy at all. Extensive experiments demonstrate that for both regression and classification tasks, our method achieves the same accuracy as non-private approaches and outperforms the state-of-the-art defence schemes. Besides, the defence ability of our method against reconstruction and membership inference attack is significantly better than the state-of-the-art related defence schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪音_xy发布了新的文献求助20
刚刚
1秒前
1秒前
优美水彤完成签到,获得积分10
2秒前
2秒前
上官若男应助怕黑的鼠标采纳,获得10
5秒前
打豆豆的灰鸭完成签到,获得积分20
6秒前
zhangxin发布了新的文献求助10
7秒前
10秒前
zyz完成签到,获得积分10
14秒前
15秒前
Reese完成签到 ,获得积分10
15秒前
A晨完成签到,获得积分10
15秒前
科研通AI2S应助橙子采纳,获得10
15秒前
zhengzehong完成签到,获得积分10
16秒前
腼腆的海露完成签到,获得积分10
18秒前
Akim应助冷酷的风华采纳,获得10
18秒前
诚心忆秋发布了新的文献求助10
19秒前
Duke完成签到,获得积分10
19秒前
ZeJ完成签到,获得积分20
19秒前
琪音_xy完成签到,获得积分20
20秒前
20秒前
23秒前
san完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
科研通AI2S应助Duke采纳,获得10
25秒前
vdvdvsd发布了新的文献求助10
25秒前
26秒前
嘿嘿完成签到 ,获得积分10
26秒前
yanna完成签到,获得积分10
26秒前
replay完成签到,获得积分10
27秒前
27秒前
29秒前
大模型应助berg采纳,获得10
29秒前
30秒前
30秒前
WWW发布了新的文献求助10
30秒前
Alarician完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145328
求助须知:如何正确求助?哪些是违规求助? 2796792
关于积分的说明 7821187
捐赠科研通 2453031
什么是DOI,文献DOI怎么找? 1305409
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464