Visibility Prediction Based on Landmark Detection in Foggy Weather

能见度 地标 计算机科学 人工智能 计算机视觉 地理 气象学
作者
Mi Chen,Baoxi Yuan,Peng Ma,Yingxia Guo,Qi Le,Feng Wang,Wenbo Wu,Lingling Wang
标识
DOI:10.1109/icris52159.2020.00041
摘要

Visibility prediction has important application value in transportation, aviation, military, agriculture and other fields. Traditional visibility monitoring instruments have the disadvantages of complex operation, expensive price and low accuracy. At the same time, the existing visibility prediction methods based on video images also have the disadvantages of low accuracy. In this paper, a visibility prediction method in foggy weather based on deep learning is proposed. The proposed method uses target detection network YOLOv5 (YOU ONLY LOOK ONCE V5) to detect the ground landmarks in the video, then establishes a camera imaging model to calculate distance of the ground landmarks, and finally obtains the visibility value according to the distance of the farthest landmark that can be detected. In the proposed method, CIOU _Loss is selected as the loss function of YOLOv5 to improve the convergence speed and prediction accuracy. The experimental results show that thanks to yolov5's powerful and fast detection capabilities, after the training of 200 epoches, the proposed method can detect landmarks in foggy images with a 100% recall rate, which has the advantages of low cost and high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
船舵发布了新的文献求助10
刚刚
gaos完成签到,获得积分10
1秒前
念念发布了新的文献求助10
1秒前
An_mie完成签到,获得积分10
1秒前
1秒前
1秒前
Arabella完成签到,获得积分10
2秒前
HEIKU应助追梦人采纳,获得10
2秒前
2秒前
小T儿发布了新的文献求助10
2秒前
852应助woxiangbiye采纳,获得10
2秒前
飞羽完成签到,获得积分10
3秒前
Owen应助cherry采纳,获得10
3秒前
坚定的老六完成签到,获得积分10
3秒前
协和_子鱼完成签到,获得积分0
3秒前
4秒前
Hyde完成签到,获得积分10
5秒前
小南孩完成签到,获得积分10
5秒前
5秒前
6秒前
研友_VZG7GZ应助keyancui采纳,获得10
6秒前
康康完成签到 ,获得积分10
7秒前
英姑应助毕业就好采纳,获得10
7秒前
虚心的迎荷完成签到,获得积分10
7秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
7秒前
7秒前
祝雲完成签到,获得积分10
7秒前
新的心跳发布了新的文献求助10
7秒前
壹拾柒完成签到,获得积分10
8秒前
8秒前
8秒前
mimi发布了新的文献求助10
8秒前
呆呆完成签到,获得积分10
9秒前
blebui应助姜茶采纳,获得10
9秒前
幼稚园小新完成签到,获得积分10
9秒前
123完成签到,获得积分10
9秒前
10秒前
snowball完成签到,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672