Structure-Guided Feature Transform Hybrid Residual Network for Remote Sensing Object Detection

计算机科学 残余物 像素 稳健性(进化) 人工智能 目标检测 判别式 特征(语言学) 计算机视觉 模式识别(心理学) 骨干网 特征提取 遥感 地理 算法 电信 基因 哲学 生物化学 语言学 化学
作者
Jiaojiao Li,Huanqing Zhang,Rui Song,Weiying Xie,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:21
标识
DOI:10.1109/tgrs.2021.3103964
摘要

Object detection in remote sensing imagery (RSI) is a fundamental task for Earth monitoring. Objects captured from the bird’s eye view perspective in RSI can appear as multiscale in arbitrary orientations, most of which are small and dense. In specific, vehicles or ships only occupy a dozen pixels in the image, but are surrounded by roads and seas, which occupy thousands of pixels and comprise overwhelmingly dominant of all pixels. Although a large number of common object detection methods have been proposed, most of them cannot detect small and dense objects accurately because none of them has paid enough attention to the unique characteristic of RSI. In this work, we propose a novel structure-guided feature transform hybrid residual (SGFTHR) network, which can conquer the low performance of detection of objects at different scales, especially for small and dense objects, in an anchor-free manner. The structure-guided feature transform (SGFT) module is promoted to extract discriminative structural information and guide this information into high-level contextual feature maps, preventing the important low-level spatial and structural information from being lost when the network goes deeper. Furthermore, the hybrid residual (HR) module is embedded in the backbone to acquire multiscale features in a novel hybrid hierarchical residual-like manner. Extensive experiments are performed on the HRRSD and NWPU VHR-10 datasets to evaluate the performance of the SGFTHR network, which demonstrates that our SGFTHR network achieves state-of-the-art detection accuracy with high efficiency and robustness. Specifically, 4.12% improvements in mean average precision (mAP) on the HRRSD dataset compared with baseline powerfully demonstrate the effectiveness and superiority of the SGFTHR network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
快乐的心情完成签到,获得积分10
3秒前
5秒前
Rita发布了新的文献求助10
6秒前
8秒前
ChouNic完成签到 ,获得积分10
8秒前
英俊的铭应助malenia采纳,获得30
9秒前
gyq发布了新的文献求助10
9秒前
米共完成签到 ,获得积分10
9秒前
动漫大师发布了新的文献求助10
10秒前
Orange应助认真摆烂采纳,获得10
10秒前
nater2ver完成签到,获得积分10
13秒前
16秒前
17秒前
17秒前
几米杨完成签到,获得积分10
18秒前
Karel完成签到,获得积分0
18秒前
研友_VZG7GZ应助YGG采纳,获得10
19秒前
20秒前
Lucas应助wszl采纳,获得10
22秒前
猪猪hero发布了新的文献求助30
22秒前
malenia发布了新的文献求助30
23秒前
好好发布了新的文献求助10
23秒前
nater1ver完成签到,获得积分10
23秒前
24秒前
飘飘完成签到,获得积分10
24秒前
左撇子发布了新的文献求助10
25秒前
科研通AI5应助GS采纳,获得10
25秒前
科研通AI5应助aqubsgha采纳,获得10
26秒前
奋斗的盼柳完成签到 ,获得积分10
27秒前
水泥酱发布了新的文献求助30
31秒前
搜集达人应助zhou_AGCT采纳,获得10
37秒前
38秒前
俊逸尔风完成签到 ,获得积分10
39秒前
39秒前
飘飘发布了新的文献求助10
39秒前
炸毛胡图图完成签到,获得积分10
40秒前
41秒前
42秒前
科研通AI5应助jinghai采纳,获得30
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669791
求助须知:如何正确求助?哪些是违规求助? 3227297
关于积分的说明 9774888
捐赠科研通 2937413
什么是DOI,文献DOI怎么找? 1609333
邀请新用户注册赠送积分活动 760217
科研通“疑难数据库(出版商)”最低求助积分说明 735765