Machine Learning Based Power Estimation for CMOS VLSI Circuits

超大规模集成 计算机科学 均方误差 CMOS芯片 随机森林 电子线路 功率(物理) 算法 人工智能 电子工程 统计 数学 电气工程 嵌入式系统 工程类 量子力学 物理
作者
V. Govindaraj,B. Aruna Devi
出处
期刊:Applied Artificial Intelligence [Taylor & Francis]
卷期号:35 (13): 1043-1055 被引量:19
标识
DOI:10.1080/08839514.2021.1966885
摘要

Nowadays, machine learning (ML) algorithms are receiving massive attention in most of the engineering application since it has capability in complex systems modeling using historical data. Estimation of power for CMOS VLSI circuit using various circuit attributes is proposed using passive machine learning-based technique. The proposed method uses supervised learning method, which provides a fast and accurate estimation of power without affecting the accuracy of the system. Power estimation using random forest algorithm is relatively new. Accurate estimation of power of CMOS VLSI circuits is estimated by using random forest model which is optimized and tuned by using multiobjective NSGA-II algorithm. It is inferred from the experimental results testing error varies from 1.4% to 6.8% and in terms of and Mean Square Error is 1.46e-06 in random forest method when compared to BPNN. Statistical estimation like coefficient of determination (R) and Root Mean Square Error (RMSE) are done and it is proven that random Forest is best choice for power estimation of CMOS VLSI circuits with high coefficient of determination of 0.99938, and low RMSE of 0.000116.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Stephen发布了新的文献求助10
1秒前
1秒前
微笑的li发布了新的文献求助20
1秒前
隋阳完成签到 ,获得积分10
1秒前
yu完成签到 ,获得积分10
1秒前
2秒前
jingjing完成签到,获得积分10
2秒前
超级清涟完成签到,获得积分10
2秒前
圆滑的铁勺完成签到,获得积分10
2秒前
2秒前
追光发布了新的文献求助10
3秒前
Dr.向完成签到,获得积分10
3秒前
3秒前
Druid完成签到,获得积分10
3秒前
凡城完成签到,获得积分10
3秒前
3秒前
4秒前
海纳百川应助zyyyy采纳,获得20
4秒前
4秒前
领奖完成签到,获得积分10
5秒前
WSDSG完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Noora完成签到,获得积分10
7秒前
加菲丰丰应助风清扬采纳,获得10
7秒前
晓薇发布了新的文献求助10
8秒前
乐乐应助尺八采纳,获得10
8秒前
罗小罗同学完成签到,获得积分10
8秒前
ntfn发布了新的文献求助10
8秒前
8秒前
半烟发布了新的文献求助10
8秒前
8秒前
9秒前
滚动条完成签到 ,获得积分10
9秒前
10秒前
lin完成签到,获得积分10
10秒前
酸奶巧克力完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4937256
求助须知:如何正确求助?哪些是违规求助? 4204376
关于积分的说明 13065366
捐赠科研通 3982001
什么是DOI,文献DOI怎么找? 2180433
邀请新用户注册赠送积分活动 1196350
关于科研通互助平台的介绍 1108366