Deep Neural Networks With Koopman Operators for Modeling and Control of Autonomous Vehicles

卡西姆 可解释性 计算机科学 动态模态分解 人工神经网络 操作员(生物学) 一般化 控制器(灌溉) 控制理论(社会学) 人工智能 控制工程 非线性系统 系统动力学 模型预测控制 机器学习 控制(管理) 工程类 数学 农学 生物化学 化学 抑制因子 数学分析 物理 基因 生物 转录因子 量子力学
作者
Yongqian Xiao,Xinglong Zhang,Xin Xu,Xueqing Liu,Jiahang Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 135-146 被引量:59
标识
DOI:10.1109/tiv.2022.3180337
摘要

Autonomous driving technologies have received notable attention in the past decades. In autonomous driving systems, identifying a precise dynamical model for motion control is nontrivial due to the strong nonlinearity and uncertainty in vehicle dynamics. Recent efforts have resorted to machine learning techniques for building vehicle dynamical models, but the generalization ability and interpretability of existing methods still need to be improved. In this paper, we propose a pure data-driven vehicle modeling approach based on deep neural networks with an interpretable Koopman operator. The main advantage of using the Koopman operator is to represent the nonlinear dynamics in a linear lifted feature space. In the proposed approach, a deep learning-based extended dynamic mode decomposition algorithm is presented to learn a finite-dimensional approximation of the Koopman operator. A multi-step prediction loss function is used in the training process, enabling a long-term prediction capability. Furthermore, a data-driven model predictive controller with the learned Koopman model is designed for velocity profile tracking control of autonomous vehicles. Simulation results in a high-fidelity CarSim environment show that our approach outperforms previously developed traditional and advanced modeling methods. Velocity profile tracking tests of the autonomous vehicle are also performed in the CarSim environment. The results show that our approach has better tracking accuracy and higher computational efficiency than the model predictive control algorithms using a nonlinear model and a linear time-varying model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助咔咔咔采纳,获得10
刚刚
刚刚
刚刚
tdtk发布了新的文献求助20
1秒前
WuzJ1ee完成签到,获得积分20
1秒前
科研通AI6应助追寻的宛er采纳,获得10
1秒前
2秒前
储物间完成签到,获得积分10
2秒前
2秒前
hdbys发布了新的文献求助30
2秒前
2秒前
RNNNLL完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
长夜变清早完成签到,获得积分10
5秒前
5秒前
zgd发布了新的文献求助10
5秒前
在水一方应助sos采纳,获得10
5秒前
嘻嘻发布了新的文献求助10
5秒前
谷雨秋发布了新的文献求助10
8秒前
8秒前
任性的梦菲完成签到,获得积分10
9秒前
10秒前
今后应助张雯雯采纳,获得10
10秒前
量子星尘发布了新的文献求助80
11秒前
Ai77发布了新的文献求助10
11秒前
Sallxy发布了新的文献求助10
11秒前
Dormantparner发布了新的文献求助10
11秒前
12秒前
KouZL发布了新的文献求助30
12秒前
科研通AI6应助满家归寻采纳,获得10
12秒前
13秒前
一口气吃七碗饭完成签到 ,获得积分10
13秒前
13秒前
14秒前
科研通AI6应助朴实涵菡采纳,获得10
14秒前
14秒前
小马甲应助坚定茉莉采纳,获得10
15秒前
疯狂的晓山完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871