Deep Neural Networks With Koopman Operators for Modeling and Control of Autonomous Vehicles

卡西姆 可解释性 计算机科学 动态模态分解 人工神经网络 操作员(生物学) 一般化 控制器(灌溉) 控制理论(社会学) 人工智能 控制工程 非线性系统 系统动力学 模型预测控制 机器学习 控制(管理) 工程类 数学 农学 生物化学 化学 抑制因子 数学分析 物理 基因 生物 转录因子 量子力学
作者
Yongqian Xiao,Xinglong Zhang,Xin Xu,Xueqing Liu,Jiahang Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 135-146 被引量:59
标识
DOI:10.1109/tiv.2022.3180337
摘要

Autonomous driving technologies have received notable attention in the past decades. In autonomous driving systems, identifying a precise dynamical model for motion control is nontrivial due to the strong nonlinearity and uncertainty in vehicle dynamics. Recent efforts have resorted to machine learning techniques for building vehicle dynamical models, but the generalization ability and interpretability of existing methods still need to be improved. In this paper, we propose a pure data-driven vehicle modeling approach based on deep neural networks with an interpretable Koopman operator. The main advantage of using the Koopman operator is to represent the nonlinear dynamics in a linear lifted feature space. In the proposed approach, a deep learning-based extended dynamic mode decomposition algorithm is presented to learn a finite-dimensional approximation of the Koopman operator. A multi-step prediction loss function is used in the training process, enabling a long-term prediction capability. Furthermore, a data-driven model predictive controller with the learned Koopman model is designed for velocity profile tracking control of autonomous vehicles. Simulation results in a high-fidelity CarSim environment show that our approach outperforms previously developed traditional and advanced modeling methods. Velocity profile tracking tests of the autonomous vehicle are also performed in the CarSim environment. The results show that our approach has better tracking accuracy and higher computational efficiency than the model predictive control algorithms using a nonlinear model and a linear time-varying model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的蟠桃应助漠漠采纳,获得50
1秒前
何思逸发布了新的文献求助10
2秒前
哦哦哦发布了新的文献求助10
2秒前
3秒前
852应助芷莯采纳,获得10
3秒前
Scarecrow发布了新的文献求助30
4秒前
打打应助潇洒寒烟采纳,获得10
4秒前
yuan完成签到 ,获得积分10
4秒前
英俊的铭应助小钟采纳,获得10
4秒前
思源应助o30采纳,获得10
4秒前
wss完成签到,获得积分10
4秒前
彭于晏应助瓜子采纳,获得10
6秒前
雪白尔琴完成签到,获得积分10
6秒前
6秒前
EasonYan发布了新的文献求助10
6秒前
shinn发布了新的文献求助10
7秒前
谨慎青亦完成签到,获得积分10
8秒前
脑洞疼应助落后的哈密瓜采纳,获得10
8秒前
无花果应助ZIS采纳,获得10
9秒前
polaris完成签到 ,获得积分10
9秒前
Lucas应助没有采纳,获得10
9秒前
zhangfuchao发布了新的文献求助10
9秒前
10秒前
嗑cp完成签到 ,获得积分10
10秒前
TMOMOR应助輝23采纳,获得10
10秒前
汉堡包应助完美惜寒采纳,获得10
10秒前
10秒前
英俊的铭应助i1采纳,获得10
10秒前
田様应助hh采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
muyi完成签到,获得积分10
13秒前
欣然完成签到 ,获得积分10
13秒前
14秒前
顾矜应助Felix采纳,获得10
14秒前
万能图书馆应助雪白尔琴采纳,获得10
15秒前
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827