Deep Neural Networks With Koopman Operators for Modeling and Control of Autonomous Vehicles

卡西姆 可解释性 计算机科学 动态模态分解 人工神经网络 操作员(生物学) 一般化 控制器(灌溉) 控制理论(社会学) 人工智能 控制工程 非线性系统 系统动力学 模型预测控制 机器学习 控制(管理) 工程类 数学 农学 生物化学 化学 抑制因子 数学分析 物理 基因 生物 转录因子 量子力学
作者
Yongqian Xiao,Xinglong Zhang,Xin Xu,Xueqing Liu,Jiahang Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 135-146 被引量:59
标识
DOI:10.1109/tiv.2022.3180337
摘要

Autonomous driving technologies have received notable attention in the past decades. In autonomous driving systems, identifying a precise dynamical model for motion control is nontrivial due to the strong nonlinearity and uncertainty in vehicle dynamics. Recent efforts have resorted to machine learning techniques for building vehicle dynamical models, but the generalization ability and interpretability of existing methods still need to be improved. In this paper, we propose a pure data-driven vehicle modeling approach based on deep neural networks with an interpretable Koopman operator. The main advantage of using the Koopman operator is to represent the nonlinear dynamics in a linear lifted feature space. In the proposed approach, a deep learning-based extended dynamic mode decomposition algorithm is presented to learn a finite-dimensional approximation of the Koopman operator. A multi-step prediction loss function is used in the training process, enabling a long-term prediction capability. Furthermore, a data-driven model predictive controller with the learned Koopman model is designed for velocity profile tracking control of autonomous vehicles. Simulation results in a high-fidelity CarSim environment show that our approach outperforms previously developed traditional and advanced modeling methods. Velocity profile tracking tests of the autonomous vehicle are also performed in the CarSim environment. The results show that our approach has better tracking accuracy and higher computational efficiency than the model predictive control algorithms using a nonlinear model and a linear time-varying model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研小子发布了新的文献求助30
2秒前
Owen应助阿波罗光之子采纳,获得30
3秒前
beituo发布了新的文献求助10
4秒前
zqingqing发布了新的文献求助10
4秒前
4秒前
5秒前
SYLH应助zfg采纳,获得10
5秒前
5秒前
zy完成签到,获得积分20
7秒前
8秒前
花花发布了新的文献求助10
8秒前
8秒前
夕杳完成签到,获得积分10
9秒前
赘婿应助stars采纳,获得10
9秒前
知无涯者发布了新的文献求助10
9秒前
有使不完牛劲的正主完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
慕青应助Friday采纳,获得10
12秒前
13秒前
慕青应助beituo采纳,获得10
13秒前
隐形曼青应助山猪吃细糠采纳,获得10
15秒前
福福发布了新的文献求助10
15秒前
诸葛语琴发布了新的文献求助10
15秒前
15秒前
上官若男应助清脆的圆子采纳,获得10
16秒前
17秒前
qian发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
王足各发布了新的文献求助10
19秒前
Owen应助Ebony采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226