An Imaging Information Estimation Network for Underwater Image Color Restoration

计算机科学 颜色校正 稳健性(进化) 人工智能 基本事实 计算机视觉 水下 失真(音乐) 彩色图像 图像复原 数据集 图像形成 图像(数学) 图像处理 地质学 电信 基因 海洋学 生物化学 化学 放大器 带宽(计算)
作者
Jianxiang Lu,Fei Yuan,Weidi Yang,En Cheng
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1228-1239 被引量:19
标识
DOI:10.1109/joe.2021.3077692
摘要

Computer vision plays an important role in scientific research, resource exploration, and other underwater applications. However, it suffers from the severe color distortion, which is caused by the scattering and absorption of light in the water. In this article, an underwater image color restoration network (UICRN) is proposed to obtain the real color of the image by estimating the main parameters of the underwater imaging model. First, an encoder neural network is applied to extract features from the input underwater image. Second, three independent decoders are used to estimate the direct light transmission map, backscattered light transmission map, and veiling light. Third, the loss functions and the training strategy are designed to improve the performance of restoration. As we know, the learning-based method would require a paired data set for training. An underwater image generation method is also proposed in this article to obtain the data set consisting of color-distorted images and corresponding ground truth. The method combines the inherent optical properties and apparent optical properties with structure information to generate the paired data set. More than 20 000 pairs of underwater images are generated based on the method. Finally, the UICRN method is quantitatively evaluated through various experiments, such as color chart testing in the South China Sea and natural underwater image evaluation. It demonstrates that the UICRN method is competitive with previous state-of-the-art methods in color restoration and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hz_sz完成签到,获得积分10
刚刚
刚刚
空白完成签到,获得积分10
刚刚
所所应助合适苗条采纳,获得10
刚刚
专注易绿完成签到,获得积分10
1秒前
Anne应助吱嗷赵采纳,获得10
1秒前
xin应助666采纳,获得20
2秒前
YY发布了新的文献求助10
2秒前
2秒前
huanhuan完成签到,获得积分10
3秒前
小刘不笨完成签到,获得积分10
3秒前
吕绪特完成签到 ,获得积分10
3秒前
4秒前
愉快的夏菡完成签到,获得积分10
4秒前
研友_gnv61n完成签到,获得积分10
4秒前
zmy完成签到,获得积分10
4秒前
小蘑菇应助守约采纳,获得10
5秒前
5秒前
空白发布了新的文献求助10
6秒前
buno应助721采纳,获得20
6秒前
石阶上完成签到 ,获得积分10
6秒前
du完成签到 ,获得积分10
6秒前
Xu完成签到,获得积分10
7秒前
mmmm完成签到,获得积分10
7秒前
7秒前
情怀应助YY采纳,获得10
7秒前
懦弱的安珊完成签到,获得积分10
8秒前
Akim应助xiaokezhang采纳,获得10
8秒前
8秒前
柠木完成签到 ,获得积分10
8秒前
系统提示发布了新的文献求助10
8秒前
marigold完成签到,获得积分10
8秒前
Gaoge完成签到,获得积分10
9秒前
愉快的无招完成签到,获得积分10
9秒前
9秒前
HEIKU应助习习采纳,获得10
10秒前
10秒前
10秒前
10秒前
合适苗条完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678