An Imaging Information Estimation Network for Underwater Image Color Restoration

计算机科学 颜色校正 稳健性(进化) 人工智能 基本事实 计算机视觉 水下 失真(音乐) 彩色图像 图像复原 数据集 图像形成 图像(数学) 图像处理 地质学 电信 基因 海洋学 生物化学 化学 放大器 带宽(计算)
作者
Jianxiang Lu,Fei Yuan,Weidi Yang,En Cheng
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1228-1239 被引量:19
标识
DOI:10.1109/joe.2021.3077692
摘要

Computer vision plays an important role in scientific research, resource exploration, and other underwater applications. However, it suffers from the severe color distortion, which is caused by the scattering and absorption of light in the water. In this article, an underwater image color restoration network (UICRN) is proposed to obtain the real color of the image by estimating the main parameters of the underwater imaging model. First, an encoder neural network is applied to extract features from the input underwater image. Second, three independent decoders are used to estimate the direct light transmission map, backscattered light transmission map, and veiling light. Third, the loss functions and the training strategy are designed to improve the performance of restoration. As we know, the learning-based method would require a paired data set for training. An underwater image generation method is also proposed in this article to obtain the data set consisting of color-distorted images and corresponding ground truth. The method combines the inherent optical properties and apparent optical properties with structure information to generate the paired data set. More than 20 000 pairs of underwater images are generated based on the method. Finally, the UICRN method is quantitatively evaluated through various experiments, such as color chart testing in the South China Sea and natural underwater image evaluation. It demonstrates that the UICRN method is competitive with previous state-of-the-art methods in color restoration and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老北京发布了新的文献求助10
刚刚
1秒前
Kiana完成签到,获得积分10
2秒前
HoiChan发布了新的文献求助10
2秒前
欢乐谷完成签到,获得积分10
2秒前
XIAOMEIMA完成签到,获得积分10
3秒前
科目三应助Arlene采纳,获得10
4秒前
乐观宛海完成签到,获得积分10
4秒前
体贴香岚发布了新的文献求助10
4秒前
传奇3应助axiba采纳,获得10
4秒前
5秒前
英姑应助葛稀采纳,获得10
5秒前
XIAOMEIMA发布了新的文献求助100
6秒前
7秒前
子车茗应助TeeteePor采纳,获得10
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
知然发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
解语花发布了新的文献求助150
11秒前
健壮易巧完成签到,获得积分10
12秒前
GeoTong发布了新的文献求助10
14秒前
肖浩翔发布了新的文献求助10
14秒前
可靠猎豹完成签到,获得积分10
14秒前
Zbx发布了新的文献求助10
15秒前
Akim应助berg采纳,获得10
15秒前
15秒前
16秒前
科研通AI6应助矮小的笑旋采纳,获得10
18秒前
清爽的含灵完成签到,获得积分10
18秒前
优美橘子发布了新的文献求助10
20秒前
lilili发布了新的文献求助10
21秒前
儒雅的轻舞飘扬完成签到,获得积分10
21秒前
明理绝悟完成签到 ,获得积分10
21秒前
很傻的狗完成签到,获得积分0
22秒前
稳重擎苍完成签到,获得积分10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497