钙钛矿(结构)
GSM演进的增强数据速率
材料科学
乙酰胆碱
离子
钙钛矿太阳能电池
太阳能电池
化学物理
生物物理学
光电子学
化学
有机化学
电信
结晶学
生物
计算机科学
内分泌学
作者
Zhiang Zhang,Jikun Jiang,Xiao Liu,Xin Wang,Luyao Wang,Yuankun Qiu,Zhanfei Zhang,Yiting Zheng,Xueyun Wu,Jianghu Liang,Congcong Tian,Chun‐Chao Chen
出处
期刊:Small
[Wiley]
日期:2021-12-01
卷期号:18 (6)
被引量:41
标识
DOI:10.1002/smll.202105184
摘要
Abstract Although incorporating multiple halogen (bromine) anions and alkali (rubidium) cations can improve the open‐circuit voltage ( V oc ) of perovskite solar cells (PSCs), severe voltage loss and poor stability have remained pivotal limitations to their further commercialization. In this study, acetylcholine (ACh + ) is anchored to the surface of a quadruple‐cation perovskite to provide additional electron states near the valence band maximum of the perovskite surface, thereby enhancing the band alignment and minimizing the V oc loss significantly. Moreover, the quaternary ammonium and carbonyl units of ACh + passivate the antisite and vacancy defects of the organic/inorganic hybrid perovskite. Because of strong interactions between ACh + and the perovskite, the formation of lead clusters and the migration of halogen anions in the perovskite film are suppressed. As a result, the device prepared with ACh + post‐treatment delivers a power conversion efficiency (PCE) (21.56%) and a value of V oc (1.21 V) that are much higher than those of the pristine device, along with a twofold decrease in the hysteresis index. After storage for 720 h in humid air, the device subjected to ACh + treatment maintained 70% of its initial PCE. Thus, post‐treatment with ACh + appears to be a useful strategy for preparing efficient and stable PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI