Gene selection for microarray data classification based on Gray Wolf Optimizer enhanced with TRIZ-inspired operators

计算机科学 数据挖掘 支持向量机 基因选择 基因芯片分析 DNA微阵列 机器学习 人工智能 微阵列分析技术 基因 生物 遗传学 基因表达
作者
Osama Ahmad Alomari,Sharif Naser Makhadmeh,Mohammed Azmi Al-Betar,Zaid Abdi Alkareem Alyasseri,Iyad Abu Doush,Ammar Kamal Abasi,Mohammed A. Awadallah,Raed Abu Zitar
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:223: 107034-107034 被引量:61
标识
DOI:10.1016/j.knosys.2021.107034
摘要

DNA microarray technology is the fabrication of a single chip to contain a thousand genetic codes. Each microarray experiment can analyze many thousands of genes in parallel. The outcomes of the DNA microarray is a table/matrix, called gene expression data. Pattern recognition algorithms are widely applied to gene expression data to differentiate between health and cancerous patient samples. However, gene expression data is characterized as a high dimensional data that typically encompassed of redundant, noisy, and irrelevant genes. Datasets with such characteristics pose a challenge to machine learning algorithms. This is because they impede the training and testing process and entail high resource computations that deteriorate the classification performance. In order to avoid these pitfalls, gene selection is needed. This paper proposes a new hybrid filter-wrapper approach using robust Minimum Redundancy Maximum Relevancy (rMRMR) as a filter approach to choose the top-ranked genes. Modified Gray Wolf Optimizer (MGWO) is used as a wrapper approach to seek further small sets of genes. In MGWO, new optimization operators inspired by the TRIZ-inventive solution are coupled with the original GWO to increase the diversity of the population. To evaluate the performance of the proposed method, nine well-known microarray datasets are tested. The support vector machine (SVM) is employed for the classification task to estimate the goodness of the selected subset of genes. The effectiveness of TRIZ optimization operators in MGWO is evaluated by investigating the convergence behavior of GWO with and without TRIZ optimization operators. Moreover, the results of MGWO are compared with seven state-of-art gene selection methods using the same datasets based on classification accuracy and the number of selected genes. The results show that the proposed method achieves the best results in four out of nine datasets and it obtains remarkable results on the remaining datasets. The experimental results demonstrated the effectiveness of the proposed method in searching the gene search space and it was able to find the best gene combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
happyAlice应助ggb采纳,获得10
3秒前
哦哦哦完成签到,获得积分20
4秒前
5秒前
Dr_Shi完成签到,获得积分10
5秒前
Ttong完成签到,获得积分10
5秒前
8秒前
8秒前
聪明醉薇完成签到,获得积分10
9秒前
温暖冬萱发布了新的文献求助10
10秒前
simpleplanfx完成签到,获得积分10
11秒前
iu发布了新的文献求助10
11秒前
11秒前
科研通AI5应助浮云客采纳,获得10
11秒前
罗罗完成签到 ,获得积分10
11秒前
A溶大美噶发布了新的文献求助10
11秒前
XxxxxxENT发布了新的文献求助80
13秒前
15秒前
杨涵完成签到 ,获得积分10
15秒前
科研通AI2S应助VDC采纳,获得10
16秒前
Akim应助Estrange采纳,获得10
16秒前
人如果完成签到,获得积分10
17秒前
junhua完成签到,获得积分20
17秒前
黎明发布了新的文献求助10
17秒前
17秒前
heart发布了新的文献求助10
18秒前
朴素绿真完成签到,获得积分10
18秒前
一一发布了新的文献求助10
20秒前
CodeCraft应助风趣的惜天采纳,获得10
20秒前
人如果发布了新的文献求助10
21秒前
高高白曼舞完成签到,获得积分10
22秒前
彭于晏应助ll采纳,获得10
22秒前
瘦瘦的迎南完成签到 ,获得积分10
23秒前
情怀应助elsa采纳,获得10
24秒前
XxxxxxENT完成签到,获得积分10
24秒前
任性的雁开完成签到,获得积分10
24秒前
娇气的白卉完成签到,获得积分10
24秒前
科研通AI5应助errrt采纳,获得10
24秒前
26秒前
乐乐应助dal采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Andrew Duncan Senior: Physician of the Enlightenment 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3689365
求助须知:如何正确求助?哪些是违规求助? 3238978
关于积分的说明 9837409
捐赠科研通 2950869
什么是DOI,文献DOI怎么找? 1618177
邀请新用户注册赠送积分活动 764884
科研通“疑难数据库(出版商)”最低求助积分说明 738918