Diameter distribution estimation with laser scanning based multisource single tree inventory

点云 树(集合论) 胸径 森林资源清查 均方误差 激光扫描 遥感 数学 计算机科学 统计 森林经营 人工智能 地理 林业 激光器 数学分析 物理 光学
作者
Ville Kankare,Xinlian Liang,Mikko Vastaranta,Xiaowei Yu,Markus Holopainen,Juha Hyyppä
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:108: 161-171 被引量:59
标识
DOI:10.1016/j.isprsjprs.2015.07.007
摘要

Tree detection and tree species recognition are bottlenecks of the airborne remote sensing-based single tree inventories. The effect of these factors in forest attribute estimation can be reduced if airborne measurements are aided with tree mapping information that is collected from the ground. The main objective here was to demonstrate the use of terrestrial laser scanning-derived (TLS) tree maps in aiding airborne laser scanning-based (ALS) single tree inventory (multisource single tree inventory, MS-STI) and its capability in predicting diameter distribution in various forest conditions. Automatic measurement of TLS point clouds provided the tree maps and the required reference information from the tree attributes. The study area was located in Evo, Finland, and the reference data was acquired from 27 different sample plots with varying forest conditions. The workflow of MS-STI included: (1) creation of automatic tree map from TLS point clouds, (2) automatic diameter at breast height (DBH) measurement from TLS point clouds, (3) individual tree detection (ITD) based on ALS, (4) matching the ITD segments to the field-measured reference, (5) ALS point cloud metric extraction from the single tree segments and (6) DBH estimation based on the derived metrics. MS-STI proved to be accurate and efficient method for DBH estimation and predicting diameter distribution. The overall accuracy (root mean squared error, RMSE) of the DBH was 36.9 mm. Results showed that the DBH accuracy decreased if the tree density (trees/ha) increased. The highest accuracies were found in old-growth forests (tree densities less than 500 stems/ha). MS-STI resulted in the best accuracies regarding Norway spruce (Picea abies (L.) H. Karst.)-dominated forests (RMSE of 29.9 mm). Diameter distributions were predicted with low error indices, thereby resulting in a good fit compared to the reference. Based on the results, diameter distribution estimation with MS-STI is highly dependent on the forest structure and the accuracy of the tree maps that are used. The most important development step in the future for the MS-STI and automatic measurements of the TLS point cloud is to develop tree species recognition methods and further develop tree detection techniques. The possibility of using MLS or harvester data as a basis for the required tree maps should also be assessed in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘怀蕊完成签到,获得积分10
刚刚
刚刚
LLL发布了新的文献求助10
刚刚
跳跃乘风完成签到,获得积分10
1秒前
Anxinxin完成签到,获得积分10
1秒前
阳佟冬卉完成签到,获得积分10
2秒前
Silence发布了新的文献求助10
2秒前
2秒前
通通通发布了新的文献求助10
3秒前
帅气的秘密完成签到 ,获得积分10
3秒前
领导范儿应助马建国采纳,获得10
3秒前
lysixsixsix完成签到,获得积分10
3秒前
4秒前
jia完成签到,获得积分10
4秒前
欣喜乐天发布了新的文献求助10
4秒前
Kiyotaka完成签到,获得积分10
4秒前
5秒前
季夏发布了新的文献求助10
5秒前
Tingshan发布了新的文献求助20
6秒前
背后的诺言完成签到 ,获得积分20
6秒前
GHOST完成签到,获得积分20
7秒前
7秒前
勤奋的蜗牛完成签到,获得积分20
7秒前
omo发布了新的文献求助10
7秒前
Akim应助糊糊采纳,获得10
8秒前
Zn应助dsjlove采纳,获得10
8秒前
月球宇航员完成签到,获得积分10
8秒前
8秒前
英姑应助亲爱的安德烈采纳,获得10
10秒前
今后应助workwork采纳,获得10
10秒前
10秒前
落后翠柏发布了新的文献求助10
10秒前
淡然凝丹完成签到,获得积分10
10秒前
Y_Jfeng完成签到,获得积分10
11秒前
潼熙甄完成签到 ,获得积分10
12秒前
Lucas应助糖糖采纳,获得10
12秒前
wyblobin发布了新的文献求助10
12秒前
星辰大海应助叶飞荷采纳,获得10
12秒前
wanmiao12完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762