Diameter distribution estimation with laser scanning based multisource single tree inventory

点云 树(集合论) 胸径 森林资源清查 均方误差 激光扫描 遥感 数学 计算机科学 统计 森林经营 人工智能 地理 林业 激光器 数学分析 物理 光学
作者
Ville Kankare,Xinlian Liang,Mikko Vastaranta,Xiaowei Yu,Markus Holopainen,Juha Hyyppä
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:108: 161-171 被引量:59
标识
DOI:10.1016/j.isprsjprs.2015.07.007
摘要

Tree detection and tree species recognition are bottlenecks of the airborne remote sensing-based single tree inventories. The effect of these factors in forest attribute estimation can be reduced if airborne measurements are aided with tree mapping information that is collected from the ground. The main objective here was to demonstrate the use of terrestrial laser scanning-derived (TLS) tree maps in aiding airborne laser scanning-based (ALS) single tree inventory (multisource single tree inventory, MS-STI) and its capability in predicting diameter distribution in various forest conditions. Automatic measurement of TLS point clouds provided the tree maps and the required reference information from the tree attributes. The study area was located in Evo, Finland, and the reference data was acquired from 27 different sample plots with varying forest conditions. The workflow of MS-STI included: (1) creation of automatic tree map from TLS point clouds, (2) automatic diameter at breast height (DBH) measurement from TLS point clouds, (3) individual tree detection (ITD) based on ALS, (4) matching the ITD segments to the field-measured reference, (5) ALS point cloud metric extraction from the single tree segments and (6) DBH estimation based on the derived metrics. MS-STI proved to be accurate and efficient method for DBH estimation and predicting diameter distribution. The overall accuracy (root mean squared error, RMSE) of the DBH was 36.9 mm. Results showed that the DBH accuracy decreased if the tree density (trees/ha) increased. The highest accuracies were found in old-growth forests (tree densities less than 500 stems/ha). MS-STI resulted in the best accuracies regarding Norway spruce (Picea abies (L.) H. Karst.)-dominated forests (RMSE of 29.9 mm). Diameter distributions were predicted with low error indices, thereby resulting in a good fit compared to the reference. Based on the results, diameter distribution estimation with MS-STI is highly dependent on the forest structure and the accuracy of the tree maps that are used. The most important development step in the future for the MS-STI and automatic measurements of the TLS point cloud is to develop tree species recognition methods and further develop tree detection techniques. The possibility of using MLS or harvester data as a basis for the required tree maps should also be assessed in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幽默的欢欢完成签到,获得积分10
刚刚
科研通AI2S应助夯大力采纳,获得10
1秒前
mjj发布了新的文献求助10
1秒前
左惋庭发布了新的文献求助10
1秒前
开心小刺猬完成签到,获得积分10
7秒前
竹落笙笙完成签到,获得积分10
7秒前
10秒前
11秒前
张磊发布了新的文献求助10
11秒前
在水一方应助bai采纳,获得10
12秒前
善良的蜡烛关注了科研通微信公众号
13秒前
14秒前
15秒前
15秒前
今后应助Mewo采纳,获得10
16秒前
书芹发布了新的文献求助10
16秒前
荀代灵发布了新的文献求助30
16秒前
16秒前
小二郎应助毓毓采纳,获得10
17秒前
19秒前
陶醉发布了新的文献求助10
19秒前
林木森完成签到,获得积分10
20秒前
ZZZ发布了新的文献求助10
20秒前
SciGPT应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
21秒前
Maestro_S应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
21秒前
22秒前
xiaohuiben发布了新的文献求助10
22秒前
bai发布了新的文献求助10
23秒前
23秒前
香蕉觅云应助不会起名采纳,获得30
23秒前
seebeg发布了新的文献求助10
24秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437