Clinical application of UF-1000i in combination with AX-4280 for the screening test ability of urinary formed elements

白质 概化理论 磁共振弥散成像 认知 神经影像学 脑形态计量学 心理学 人脑 生物 神经科学 发展心理学 医学 磁共振成像 放射科
作者
Feng Zhao,Yi Jin,Xiaohong Chen,Xinyou Xie
出处
期刊:Journal of Clinical Pathology [BMJ]
卷期号:66 (3): 229-231 被引量:7
标识
DOI:10.1136/jclinpath-2012-201095
摘要

Abstract

Multimodal imaging enables sensitive measures of the architecture and integrity of the human brain, but the high-dimensional nature of advanced brain imaging features poses inherent challenges for the analyses and interpretations. Multivariate age prediction reduces the dimensionality to one biologically informative summary measure with potential for assessing deviations from normal lifespan trajectories. A number of studies documented remarkably accurate age prediction, but the differential age trajectories and the cognitive sensitivity of distinct brain tissue classes have to a lesser extent been characterized. Exploring differential brain age models driven by tissue-specific classifiers provides a hitherto unexplored opportunity to disentangle independent sources of heterogeneity in brain biology. We trained machine-learning models to estimate brain age using various combinations of FreeSurfer based morphometry and diffusion tensor imaging based indices of white matter microstructure in 612 healthy controls aged 18–87 years. To compare the tissue- specific brain ages and their cognitive sensitivity we applied each of the 11 models in an independent and cognitively well-characterized sample (n=265, 20–88 years). Correlations between true and estimated age in our test sample were highest for the most comprehensive brain morphometry (r=0.83, CI:0.78–0.86) and white matter microstructure (r=0.79, CI:0.74–0.83) models, confirming sensitivity and generalizability. The deviance from the chronological age were sensitive to performance on several cognitive tests for various models, including spatial Stroop and symbol coding, indicating poorer performance in individuals with an over-estimated age. Tissue-specific brain age models provide sensitive measures of brain integrity, with implications for the study of a range of brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋殇浅寞完成签到,获得积分10
刚刚
刚刚
larry发布了新的文献求助10
刚刚
1秒前
协和_子鱼完成签到,获得积分0
2秒前
勇者小超人完成签到 ,获得积分10
4秒前
luopwindy关注了科研通微信公众号
4秒前
4秒前
花花2024发布了新的文献求助10
5秒前
jialu完成签到,获得积分10
6秒前
6秒前
7秒前
DoctorLily发布了新的文献求助10
7秒前
yryr完成签到 ,获得积分10
7秒前
lh完成签到 ,获得积分10
8秒前
饱满的大碗完成签到 ,获得积分10
10秒前
Zhaoyuemeng完成签到 ,获得积分10
10秒前
Eos关注了科研通微信公众号
11秒前
陈媛发布了新的文献求助10
11秒前
13秒前
JamesPei应助nimeng123采纳,获得10
16秒前
huangjing发布了新的文献求助10
19秒前
做梦的鱼完成签到,获得积分10
19秒前
21秒前
bkagyin应助咻咻采纳,获得10
21秒前
Tal完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
秋鹅完成签到,获得积分20
26秒前
机灵的雁蓉完成签到 ,获得积分10
27秒前
骐骥过隙完成签到 ,获得积分10
27秒前
Eos发布了新的文献求助10
29秒前
nimeng123发布了新的文献求助10
30秒前
hello_25baby完成签到,获得积分10
31秒前
在水一方应助奋斗的雅柔采纳,获得10
31秒前
南方姑娘完成签到,获得积分10
32秒前
悲凉的婴关注了科研通微信公众号
34秒前
34秒前
Somnolence咩完成签到,获得积分10
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671735
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9779943
捐赠科研通 2938695
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760602
科研通“疑难数据库(出版商)”最低求助积分说明 736096