In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling

材料科学 微观结构 烧结 电子背散射衍射 复合材料 电阻率和电导率 热压 压痕硬度 透射电子显微镜 晶界 冶金 纳米技术 电气工程 工程类
作者
Fenglin Wang,Yunping Li,Xiaoyu Wang,Yuichiro Koizumi,Kenta Yamanaka,Akihiko Chiba
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:657: 122-132 被引量:104
标识
DOI:10.1016/j.jallcom.2015.10.061
摘要

In this study, copper-based composites containing nanoscale TiC with high strength and high electrical conductivity (712 MPa and 72% IACS) were produced by a newly developed mechanical milling process. As-milled powder mixtures were investigated by X-ray diffraction (XRD) analysis. The results indicated that the lattice parameters of copper were increased with progress of milling due to the formation of solid solution of Cu (Ti, C). There was no transformation of Ti and C into TiC phase during the high energy milling process. It was found that the TiC particles were firstly formed during the sintering process. The effects of SPS parameters including sintering temperature and pressure on electrical and mechanical properties of sintered samples were systematically investigated. The heat treatment process after SPS was found to increase the electrical conductivity greatly as the proceeding reaction of Ti/C results in an extremely low Ti concentration in Cu matrix. Moreover, an obvious drop in microhardness was observed. The strength was slightly improved by the following hot pressing, while there was no obvious change in electrical conductivity. The microstructure evolution during the entire developed process was analyzed by means of Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The formed TiC particles were homogeneously distributed in copper matrix. Furthermore, the ultrafine-grained (UFG) structure developed by the present process could maintain stable because of the Zener pinning effect caused by nanoscale TiC particles located at grain boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ao黛雷赫完成签到,获得积分10
刚刚
星丶完成签到 ,获得积分10
1秒前
Chenzza完成签到,获得积分10
2秒前
XiHe完成签到,获得积分20
2秒前
姜玲完成签到,获得积分10
3秒前
3秒前
电光十字发布了新的文献求助10
6秒前
7秒前
XiHe发布了新的文献求助10
7秒前
已经让完成签到 ,获得积分10
8秒前
独特的秋完成签到,获得积分10
9秒前
sherry完成签到 ,获得积分10
11秒前
HHW完成签到,获得积分10
12秒前
陈坤完成签到,获得积分10
12秒前
神光发布了新的文献求助10
12秒前
天宇完成签到,获得积分10
12秒前
小满完成签到,获得积分10
13秒前
虚幻星辰完成签到,获得积分10
14秒前
聪明小于完成签到 ,获得积分10
14秒前
King强完成签到,获得积分10
15秒前
ly完成签到 ,获得积分10
15秒前
16秒前
小刚完成签到,获得积分0
17秒前
温暖大米完成签到 ,获得积分10
18秒前
孤独的问凝完成签到,获得积分10
19秒前
NovermberRain完成签到,获得积分10
19秒前
科研通AI2S应助pipipi5200采纳,获得10
19秒前
21秒前
Serein发布了新的文献求助10
22秒前
Yonina完成签到,获得积分10
22秒前
那些兔儿完成签到 ,获得积分10
23秒前
哈哈哈啦啦只完成签到,获得积分10
23秒前
SwapExisting完成签到 ,获得积分10
25秒前
斯奈克完成签到,获得积分10
26秒前
搞怪柔完成签到,获得积分10
27秒前
飞飞完成签到 ,获得积分10
27秒前
Serein完成签到,获得积分10
27秒前
盛夏完成签到,获得积分10
28秒前
28秒前
碧蓝丹烟完成签到 ,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099839
求助须知:如何正确求助?哪些是违规求助? 2751315
关于积分的说明 7612624
捐赠科研通 2403180
什么是DOI,文献DOI怎么找? 1275200
科研通“疑难数据库(出版商)”最低求助积分说明 616295
版权声明 599053