In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling

材料科学 微观结构 烧结 电子背散射衍射 复合材料 电阻率和电导率 热压 压痕硬度 透射电子显微镜 晶界 冶金 纳米技术 电气工程 工程类
作者
Fenglin Wang,Yunping Li,Xiaoyu Wang,Yuichiro Koizumi,Kenta Yamanaka,Akihiko Chiba
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:657: 122-132 被引量:104
标识
DOI:10.1016/j.jallcom.2015.10.061
摘要

In this study, copper-based composites containing nanoscale TiC with high strength and high electrical conductivity (712 MPa and 72% IACS) were produced by a newly developed mechanical milling process. As-milled powder mixtures were investigated by X-ray diffraction (XRD) analysis. The results indicated that the lattice parameters of copper were increased with progress of milling due to the formation of solid solution of Cu (Ti, C). There was no transformation of Ti and C into TiC phase during the high energy milling process. It was found that the TiC particles were firstly formed during the sintering process. The effects of SPS parameters including sintering temperature and pressure on electrical and mechanical properties of sintered samples were systematically investigated. The heat treatment process after SPS was found to increase the electrical conductivity greatly as the proceeding reaction of Ti/C results in an extremely low Ti concentration in Cu matrix. Moreover, an obvious drop in microhardness was observed. The strength was slightly improved by the following hot pressing, while there was no obvious change in electrical conductivity. The microstructure evolution during the entire developed process was analyzed by means of Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The formed TiC particles were homogeneously distributed in copper matrix. Furthermore, the ultrafine-grained (UFG) structure developed by the present process could maintain stable because of the Zener pinning effect caused by nanoscale TiC particles located at grain boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TiAmo完成签到 ,获得积分10
2秒前
你好完成签到 ,获得积分10
5秒前
NaHe发布了新的文献求助10
8秒前
纯真的德地完成签到 ,获得积分10
10秒前
倪妮完成签到 ,获得积分10
11秒前
verymiao完成签到 ,获得积分10
16秒前
震动的鹏飞完成签到 ,获得积分10
20秒前
夜雨完成签到 ,获得积分10
22秒前
我要读博士完成签到 ,获得积分10
27秒前
吃吃吃不敢吃完成签到 ,获得积分10
28秒前
Hello应助陈俊超采纳,获得10
29秒前
美梦成真完成签到 ,获得积分10
32秒前
张天宝真的爱科研完成签到,获得积分10
32秒前
张张完成签到 ,获得积分10
36秒前
39秒前
zhangsan完成签到,获得积分10
39秒前
39秒前
O_O完成签到 ,获得积分10
39秒前
羽冰酒完成签到 ,获得积分10
39秒前
yuan1226完成签到 ,获得积分10
40秒前
无情颖完成签到 ,获得积分10
40秒前
居居侠完成签到 ,获得积分10
43秒前
陈俊超发布了新的文献求助10
44秒前
猫小乐C发布了新的文献求助10
44秒前
NaHe完成签到 ,获得积分10
50秒前
平方完成签到,获得积分10
51秒前
53秒前
学术裁缝完成签到,获得积分10
56秒前
58秒前
猫小乐C完成签到,获得积分10
1分钟前
来了来了完成签到 ,获得积分10
1分钟前
1分钟前
xdd完成签到 ,获得积分10
1分钟前
尤瑟夫完成签到 ,获得积分10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
wisher完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212260
求助须知:如何正确求助?哪些是违规求助? 4388486
关于积分的说明 13663975
捐赠科研通 4248949
什么是DOI,文献DOI怎么找? 2331279
邀请新用户注册赠送积分活动 1328982
关于科研通互助平台的介绍 1282336