帕斯卡(单位)
人工智能
强化学习
计算机科学
目标检测
最小边界框
对象(语法)
跳跃式监视
计算机视觉
光学(聚焦)
视觉对象识别的认知神经科学
转化(遗传学)
班级(哲学)
模式识别(心理学)
机器学习
图像(数学)
基因
光学
物理
化学
程序设计语言
生物化学
作者
Juan C. Caicedo,Svetlana Lazebnik
标识
DOI:10.1109/iccv.2015.286
摘要
We present an active detection model for localizing objects in scenes. The model is class-specific and allows an agent to focus attention on candidate regions for identifying the correct location of a target object. This agent learns to deform a bounding box using simple transformation actions, with the goal of determining the most specific location of target objects following top-down reasoning. The proposed localization agent is trained using deep reinforcement learning, and evaluated on the Pascal VOC 2007 dataset. We show that agents guided by the proposed model are able to localize a single instance of an object after analyzing only between 11 and 25 regions in an image, and obtain the best detection results among systems that do not use object proposals for object localization.
科研通智能强力驱动
Strongly Powered by AbleSci AI