亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Refinement via Simultaneously Low-Rank and Sparse Approximation

图形 计算机科学 聚类分析 算法 稠密图 迭代法 理论计算机科学 数学 数学优化 机器学习 折线图 1-平面图
作者
Zhenyue Zhang,Zheng Zhai,Limin Li
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:44 (3): A1525-A1553 被引量:1
标识
DOI:10.1137/21m1446459
摘要

Graphs play an important role in many fields of machine learning such as clustering. Many graph-based machine learning approaches assume that the graphs have hidden group structures. However, the group structures are unclear or noisy in applications generally. Graph refinement aims to clarify the underlying group structures. In this work, a novel approach, called Simultaneously Low-rank and Sparse Approximation (SLSA), is proposed for graph refinement, which imposes a strong cluster structure through strict sparse and low-rank assumptions simultaneously. This approach minimizes a nonconvex function. Fortunately, the optimization problem can be efficiently solved via an alternating iteration method, and the iterative method converges globally under a weak condition. A fast iterative algorithm is also given for large-scale sparse graphs, which costs $O(n)$ in each iteration. Compared with two other related methods for graph refinement, SLSA performs better on both synthetic and real-world data sets. Applications of the refinement method SLSA on several machine learning algorithms are discussed in detail. Numerical experiments show that the improvements of these algorithms are significant under the SLSA modifications and better than the improvements based on the refinements of other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Jack发布了新的文献求助10
10秒前
细心的冷雪应助Jack采纳,获得10
20秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
maya完成签到,获得积分10
27秒前
31秒前
34秒前
36秒前
受伤觅柔完成签到,获得积分10
36秒前
37秒前
学医自救发布了新的文献求助10
41秒前
43秒前
47秒前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
乐乐应助舒服的觅夏采纳,获得20
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
薄衫发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
薄衫完成签到,获得积分10
3分钟前
3分钟前
3分钟前
qwe发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335274
求助须知:如何正确求助?哪些是违规求助? 2964488
关于积分的说明 8613967
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447329
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974