Exponential Synchronization of Memristor-Based Competitive Neural Networks With Reaction- Diffusions and Infinite Distributed Delays

记忆电阻器 同步(交流) 人工神经网络 参数统计 控制理论(社会学) 计算机科学 反应扩散系统 偏微分方程 数学 拓扑(电路) 控制(管理) 数学分析 人工智能 组合数学 统计 电气工程 工程类
作者
Leimin Wang,Chuan‐Ke Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 745-758 被引量:38
标识
DOI:10.1109/tnnls.2022.3176887
摘要

Taking into account the infinite distributed delays and reaction-diffusions, this article investigates the global exponential synchronization problem of a class of memristor-based competitive neural networks (MCNNs) with different time scales. Based on the Lyapunov-Krasovskii functional and inequality approach, an adaptive control approach is proposed to ensure the exponential synchronization of the addressed drive-response networks. The closed-loop system is a discontinuous and delayed partial differential system in a cascade form, involving the spatial diffusion, the infinite distributed delays, the parametric adaptive law, the state-dependent switching parameters, and the variable structure controllers. By combining the theories of nonsmooth analysis, partial differential equation (PDE) and adaptive control, we present a new analytical method for rigorously deriving the synchronization of the states of the complex system. The derived m-norm (m ≥ 2)-based synchronization criteria are easily verified and the theoretical results are easily extended to memristor-based neural networks (NNs) without different time scales and reaction-diffusions. Finally, numerical simulations are presented to verify the effectiveness of the theoretical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王侯将相完成签到,获得积分10
1秒前
赘婿应助Hollow采纳,获得10
1秒前
lierking应助个性无声采纳,获得10
1秒前
1秒前
kk完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
liangliang完成签到,获得积分10
3秒前
3秒前
林白完成签到,获得积分10
3秒前
4秒前
荔枝凉完成签到,获得积分10
4秒前
可爱的函函应助啦啦啦采纳,获得10
4秒前
littlequiet完成签到,获得积分10
4秒前
酆城发布了新的文献求助10
5秒前
5秒前
5秒前
Singularity应助lorentzh采纳,获得10
5秒前
7秒前
领导范儿应助smart采纳,获得10
7秒前
wxy完成签到,获得积分20
7秒前
妍妍发布了新的文献求助10
8秒前
Akim应助yoneyamai采纳,获得10
8秒前
LL发布了新的文献求助10
8秒前
journey完成签到 ,获得积分10
8秒前
harri发布了新的文献求助10
9秒前
9秒前
25695完成签到,获得积分20
9秒前
vicar发布了新的文献求助10
9秒前
9秒前
坐忘道完成签到 ,获得积分10
10秒前
littlequiet发布了新的文献求助10
10秒前
xjy完成签到,获得积分10
11秒前
小菡菡发布了新的文献求助10
12秒前
研友_VZG7GZ应助浮浮世世采纳,获得10
13秒前
Jurica发布了新的文献求助10
13秒前
13秒前
酆城完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230