清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Framework for Deep Multitask Learning With Multiparametric Magnetic Resonance Imaging for the Joint Prediction of Histological Characteristics in Breast Cancer

人工智能 计算机科学 多任务学习 深度学习 特征(语言学) 卷积神经网络 机器学习 模式识别(心理学) 磁共振成像 任务(项目管理) 接收机工作特性 放射科 医学 语言学 哲学 管理 经济
作者
Ming Fan,Chengcheng Yuan,Guangyao Huang,Maosheng Xu,Shiwei Wang,Xin Gao,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 3884-3895 被引量:12
标识
DOI:10.1109/jbhi.2022.3179014
摘要

The clinical management and decision-making process related to breast cancer are based on multiple histological indicators. This study aims to jointly predict the Ki-67 expression level, luminal A subtype and histological grade molecular biomarkers using a new deep multitask learning method with multiparametric magnetic resonance imaging. A multitask learning network structure was proposed by introducing a common-task layer and task-specific layers to learn the high-level features that are common to all tasks and related to a specific task, respectively. A network pretrained with knowledge from the ImageNet dataset was used and fine-tuned with MRI data. Information from multiparametric MR images was fused using the strategy at the feature and decision levels. The area under the receiver operating characteristic curve (AUC) was used to measure model performance. For single-task learning using a single image series, the deep learning model generated AUCs of 0.752, 0.722, and 0.596 for the Ki-67, luminal A and histological grade prediction tasks, respectively. The performance was improved by freezing the first 5 convolutional layers, using 20% shared layers and fusing multiparametric series at the feature level, which achieved AUCs of 0.819, 0.799 and 0.747 for Ki-67, luminal A and histological grade prediction tasks, respectively. Our study showed advantages in jointly predicting correlated clinical biomarkers using a deep multitask learning framework with an appropriate number of fine-tuned convolutional layers by taking full advantage of common and complementary imaging features. Multiparametric image series-based multitask learning could be a promising approach for the multiple clinical indicator-based management of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玖月完成签到 ,获得积分10
10秒前
37秒前
49秒前
Lucas应助科研通管家采纳,获得10
53秒前
53秒前
ChatGPT完成签到,获得积分10
1分钟前
传奇3应助asdf采纳,获得10
1分钟前
1分钟前
naczx完成签到,获得积分0
1分钟前
2分钟前
2分钟前
asdf发布了新的文献求助10
2分钟前
Hello应助hongtao采纳,获得10
3分钟前
我是老大应助yumieer采纳,获得10
3分钟前
3分钟前
yumieer发布了新的文献求助10
3分钟前
yumieer完成签到,获得积分20
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
游鱼完成签到,获得积分10
4分钟前
研友_8y2G0L完成签到,获得积分10
4分钟前
4分钟前
方白秋完成签到,获得积分10
5分钟前
6分钟前
shaonianzu完成签到 ,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
欢喜的跳跳糖完成签到 ,获得积分10
6分钟前
郭德久完成签到 ,获得积分0
7分钟前
成就的绮南完成签到 ,获得积分20
7分钟前
7分钟前
8分钟前
菠萝包完成签到 ,获得积分10
8分钟前
byyyy完成签到,获得积分10
8分钟前
GingerF应助科研通管家采纳,获得30
8分钟前
共享精神应助科研通管家采纳,获得10
8分钟前
wang5945完成签到 ,获得积分10
9分钟前
Ji完成签到,获得积分10
9分钟前
9分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229