亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Framework for Deep Multitask Learning With Multiparametric Magnetic Resonance Imaging for the Joint Prediction of Histological Characteristics in Breast Cancer

人工智能 计算机科学 多任务学习 深度学习 特征(语言学) 卷积神经网络 机器学习 模式识别(心理学) 磁共振成像 任务(项目管理) 接收机工作特性 放射科 医学 语言学 哲学 管理 经济
作者
Ming Fan,Chengcheng Yuan,Guangyao Huang,Maosheng Xu,Shiwei Wang,Xin Gao,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 3884-3895 被引量:12
标识
DOI:10.1109/jbhi.2022.3179014
摘要

The clinical management and decision-making process related to breast cancer are based on multiple histological indicators. This study aims to jointly predict the Ki-67 expression level, luminal A subtype and histological grade molecular biomarkers using a new deep multitask learning method with multiparametric magnetic resonance imaging. A multitask learning network structure was proposed by introducing a common-task layer and task-specific layers to learn the high-level features that are common to all tasks and related to a specific task, respectively. A network pretrained with knowledge from the ImageNet dataset was used and fine-tuned with MRI data. Information from multiparametric MR images was fused using the strategy at the feature and decision levels. The area under the receiver operating characteristic curve (AUC) was used to measure model performance. For single-task learning using a single image series, the deep learning model generated AUCs of 0.752, 0.722, and 0.596 for the Ki-67, luminal A and histological grade prediction tasks, respectively. The performance was improved by freezing the first 5 convolutional layers, using 20% shared layers and fusing multiparametric series at the feature level, which achieved AUCs of 0.819, 0.799 and 0.747 for Ki-67, luminal A and histological grade prediction tasks, respectively. Our study showed advantages in jointly predicting correlated clinical biomarkers using a deep multitask learning framework with an appropriate number of fine-tuned convolutional layers by taking full advantage of common and complementary imaging features. Multiparametric image series-based multitask learning could be a promising approach for the multiple clinical indicator-based management of breast cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
1分钟前
Yikao完成签到 ,获得积分10
2分钟前
ZIJUNZHAO完成签到 ,获得积分10
2分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
总是很简单完成签到 ,获得积分10
3分钟前
Ykaor完成签到 ,获得积分10
3分钟前
古铜完成签到 ,获得积分10
3分钟前
3分钟前
乐正文涛发布了新的文献求助10
3分钟前
ajing完成签到,获得积分10
4分钟前
QYQ完成签到 ,获得积分10
4分钟前
msk完成签到 ,获得积分10
4分钟前
乐正怡完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
FMHChan完成签到,获得积分10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
wodetaiyangLLL完成签到 ,获得积分10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
7分钟前
铭铭完成签到 ,获得积分10
7分钟前
FashionBoy应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
Attaa完成签到,获得积分10
10分钟前
10分钟前
木木发布了新的文献求助10
10分钟前
11分钟前
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
11分钟前
科研通AI6应助年轻的雁露采纳,获得30
11分钟前
11分钟前
BowieHuang应助冷酷的寒天采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557