已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Framework for Deep Multitask Learning With Multiparametric Magnetic Resonance Imaging for the Joint Prediction of Histological Characteristics in Breast Cancer

人工智能 计算机科学 多任务学习 深度学习 特征(语言学) 卷积神经网络 机器学习 模式识别(心理学) 磁共振成像 任务(项目管理) 接收机工作特性 放射科 医学 哲学 经济 管理 语言学
作者
Ming Fan,Chengcheng Yuan,Guangyao Huang,Maosheng Xu,Shiwei Wang,Xin Gao,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 3884-3895 被引量:12
标识
DOI:10.1109/jbhi.2022.3179014
摘要

The clinical management and decision-making process related to breast cancer are based on multiple histological indicators. This study aims to jointly predict the Ki-67 expression level, luminal A subtype and histological grade molecular biomarkers using a new deep multitask learning method with multiparametric magnetic resonance imaging. A multitask learning network structure was proposed by introducing a common-task layer and task-specific layers to learn the high-level features that are common to all tasks and related to a specific task, respectively. A network pretrained with knowledge from the ImageNet dataset was used and fine-tuned with MRI data. Information from multiparametric MR images was fused using the strategy at the feature and decision levels. The area under the receiver operating characteristic curve (AUC) was used to measure model performance. For single-task learning using a single image series, the deep learning model generated AUCs of 0.752, 0.722, and 0.596 for the Ki-67, luminal A and histological grade prediction tasks, respectively. The performance was improved by freezing the first 5 convolutional layers, using 20% shared layers and fusing multiparametric series at the feature level, which achieved AUCs of 0.819, 0.799 and 0.747 for Ki-67, luminal A and histological grade prediction tasks, respectively. Our study showed advantages in jointly predicting correlated clinical biomarkers using a deep multitask learning framework with an appropriate number of fine-tuned convolutional layers by taking full advantage of common and complementary imaging features. Multiparametric image series-based multitask learning could be a promising approach for the multiple clinical indicator-based management of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空棒棒糖完成签到 ,获得积分10
刚刚
ding应助SONGREN采纳,获得10
1秒前
1秒前
漂亮香芦发布了新的文献求助10
1秒前
chris发布了新的文献求助20
3秒前
3秒前
luoshi94完成签到,获得积分10
3秒前
6秒前
7秒前
ZZQ发布了新的文献求助10
8秒前
妤懿完成签到 ,获得积分10
9秒前
刘书洋发布了新的文献求助10
10秒前
FashionBoy应助开心丸子采纳,获得10
11秒前
壮观复天完成签到 ,获得积分10
12秒前
14秒前
14秒前
123456发布了新的文献求助10
14秒前
企鹅爱煲汤完成签到,获得积分10
15秒前
kai发布了新的文献求助10
17秒前
ZZQ完成签到,获得积分10
19秒前
asd发布了新的文献求助10
19秒前
19秒前
21秒前
23秒前
小蘑菇应助Epiphany_wts采纳,获得10
23秒前
米酒汤圆发布了新的文献求助30
24秒前
violet完成签到 ,获得积分10
27秒前
若水完成签到 ,获得积分10
28秒前
28秒前
Yau完成签到,获得积分10
29秒前
kai完成签到,获得积分10
31秒前
wackykao完成签到 ,获得积分10
31秒前
32秒前
JamesPei应助Epiphany_wts采纳,获得10
34秒前
于可欣发布了新的文献求助10
35秒前
35秒前
实验耗材完成签到 ,获得积分10
36秒前
37秒前
雷马发布了新的文献求助10
37秒前
哈哈完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339