亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Creating a Digital Twin of an Insider Threat Detection Enterprise Using Model-Based Systems Engineering

计算机科学 内部威胁 入侵检测系统 统一建模语言 软件工程 可执行文件 知情人 系统工程 软件 计算机安全 工程类 操作系统 政治学 法学
作者
James D. Lee,Ahmad Alghamdi,Abbas K. Zaidi
标识
DOI:10.1109/syscon53536.2022.9773890
摘要

Inference Enterprise Modeling (IEM) is a methodology developed to address test and evaluation limitations that insider threat detection enterprises face due to a lack of ground truth and/or missing data. IEM uses a collection of statistical, data processing, analysis, and machine learning techniques to estimate and forecast the performance of these enterprises. As part of developing the IEM method, models satisfying various detection system evaluation requirements were created. In this work, we extend IEM as a digital twin generation technique by representing modeled processes as executable UML Activity Diagrams and tracing solution processes to problem requirements using ontologies. Using the proposed framework, we can rapidly prototype a digital twin of a detection system that can also be imported and executed in systems engineering simulation software tools such as Cameo Enterprise Architecture Simulation Toolkit. Cyber security and threat detection is a continuous process that requires regular maintenance and testing throughout its lifecycle, but there often exists access issues for sensitive and private data and proprietary detection model details to perform adequate test and evaluation activities in the live production environment. To solve this issue, organizations can use a digital twin technique to create a real-time virtual counterpart of the physical system. We describe a method for creating digital twins of live and/or hypothetical insider threat detection enterprises for the purpose of performing test and evaluation activities on continuous monitoring systems that are sensitive to disruptions. In this work, we use UML Activity Diagrams to leverage the integrated simulation capabilities of Model-Based Systems Engineering (MBSE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助点点zzz采纳,获得10
1秒前
科研通AI5应助科研小白采纳,获得10
3秒前
11秒前
15秒前
17秒前
九黎发布了新的文献求助10
17秒前
Akim应助yyyy采纳,获得10
18秒前
webmaster完成签到,获得积分10
23秒前
24秒前
科研小白发布了新的文献求助10
24秒前
噔噔完成签到,获得积分10
24秒前
大英留子千早爱音完成签到,获得积分10
30秒前
32秒前
慕青应助科研小白采纳,获得10
46秒前
ceeray23发布了新的文献求助20
46秒前
48秒前
愉快凡旋发布了新的文献求助10
50秒前
51秒前
1分钟前
科研小白发布了新的文献求助10
1分钟前
叶123完成签到,获得积分10
1分钟前
爱撒娇的无施完成签到,获得积分10
1分钟前
努力科研完成签到,获得积分10
1分钟前
Alex发布了新的文献求助30
1分钟前
1分钟前
吾日三省吾身完成签到 ,获得积分10
1分钟前
努力科研发布了新的文献求助10
1分钟前
小鱼完成签到,获得积分10
1分钟前
我是老大应助风止采纳,获得10
1分钟前
WizBLue发布了新的文献求助30
1分钟前
1分钟前
梦回应助长情黄蜂采纳,获得10
1分钟前
CodeCraft应助长情黄蜂采纳,获得10
1分钟前
1分钟前
香蕉觅云应助科研小白采纳,获得10
1分钟前
风止发布了新的文献求助10
1分钟前
1分钟前
yyyy发布了新的文献求助10
1分钟前
CodeCraft应助宋雨祝的账号采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865