亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Creating a Digital Twin of an Insider Threat Detection Enterprise Using Model-Based Systems Engineering

计算机科学 内部威胁 入侵检测系统 统一建模语言 软件工程 可执行文件 知情人 系统工程 软件 计算机安全 工程类 操作系统 政治学 法学
作者
James D. Lee,Ahmad Alghamdi,Abbas K. Zaidi
标识
DOI:10.1109/syscon53536.2022.9773890
摘要

Inference Enterprise Modeling (IEM) is a methodology developed to address test and evaluation limitations that insider threat detection enterprises face due to a lack of ground truth and/or missing data. IEM uses a collection of statistical, data processing, analysis, and machine learning techniques to estimate and forecast the performance of these enterprises. As part of developing the IEM method, models satisfying various detection system evaluation requirements were created. In this work, we extend IEM as a digital twin generation technique by representing modeled processes as executable UML Activity Diagrams and tracing solution processes to problem requirements using ontologies. Using the proposed framework, we can rapidly prototype a digital twin of a detection system that can also be imported and executed in systems engineering simulation software tools such as Cameo Enterprise Architecture Simulation Toolkit. Cyber security and threat detection is a continuous process that requires regular maintenance and testing throughout its lifecycle, but there often exists access issues for sensitive and private data and proprietary detection model details to perform adequate test and evaluation activities in the live production environment. To solve this issue, organizations can use a digital twin technique to create a real-time virtual counterpart of the physical system. We describe a method for creating digital twins of live and/or hypothetical insider threat detection enterprises for the purpose of performing test and evaluation activities on continuous monitoring systems that are sensitive to disruptions. In this work, we use UML Activity Diagrams to leverage the integrated simulation capabilities of Model-Based Systems Engineering (MBSE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
www完成签到 ,获得积分10
5秒前
6秒前
8秒前
正直乘云完成签到,获得积分10
10秒前
12秒前
樊少鹏发布了新的文献求助10
13秒前
14秒前
15秒前
今夕何夕完成签到,获得积分10
16秒前
16秒前
fanniezhao发布了新的文献求助10
19秒前
蜘蛛人给蜘蛛人的求助进行了留言
19秒前
呆呆的猕猴桃完成签到 ,获得积分10
20秒前
22秒前
SciGPT应助hvu采纳,获得10
22秒前
hahahan完成签到 ,获得积分10
25秒前
26秒前
成就人杰完成签到 ,获得积分10
26秒前
喜悦宫苴完成签到,获得积分10
30秒前
Ye完成签到,获得积分10
33秒前
37秒前
37秒前
37秒前
37秒前
单纯的又菱完成签到,获得积分10
38秒前
点点点完成签到 ,获得积分10
40秒前
dreamboat完成签到 ,获得积分10
41秒前
浮游应助科研通管家采纳,获得10
42秒前
合一海盗完成签到,获得积分10
42秒前
汉堡包应助科研通管家采纳,获得10
42秒前
42秒前
韩XR完成签到 ,获得积分10
44秒前
跳跃梨愁完成签到 ,获得积分10
44秒前
无限幻枫发布了新的文献求助10
45秒前
weibo完成签到,获得积分10
46秒前
47秒前
人美心善大野驴完成签到 ,获得积分10
50秒前
yb完成签到,获得积分10
1分钟前
开放夏旋发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5366475
求助须知:如何正确求助?哪些是违规求助? 4495121
关于积分的说明 13995390
捐赠科研通 4399432
什么是DOI,文献DOI怎么找? 2416683
邀请新用户注册赠送积分活动 1409448
关于科研通互助平台的介绍 1384563