Creating a Digital Twin of an Insider Threat Detection Enterprise Using Model-Based Systems Engineering

计算机科学 内部威胁 入侵检测系统 统一建模语言 软件工程 可执行文件 知情人 系统工程 软件 计算机安全 工程类 操作系统 政治学 法学
作者
James D. Lee,Ahmad Alghamdi,Abbas K. Zaidi
标识
DOI:10.1109/syscon53536.2022.9773890
摘要

Inference Enterprise Modeling (IEM) is a methodology developed to address test and evaluation limitations that insider threat detection enterprises face due to a lack of ground truth and/or missing data. IEM uses a collection of statistical, data processing, analysis, and machine learning techniques to estimate and forecast the performance of these enterprises. As part of developing the IEM method, models satisfying various detection system evaluation requirements were created. In this work, we extend IEM as a digital twin generation technique by representing modeled processes as executable UML Activity Diagrams and tracing solution processes to problem requirements using ontologies. Using the proposed framework, we can rapidly prototype a digital twin of a detection system that can also be imported and executed in systems engineering simulation software tools such as Cameo Enterprise Architecture Simulation Toolkit. Cyber security and threat detection is a continuous process that requires regular maintenance and testing throughout its lifecycle, but there often exists access issues for sensitive and private data and proprietary detection model details to perform adequate test and evaluation activities in the live production environment. To solve this issue, organizations can use a digital twin technique to create a real-time virtual counterpart of the physical system. We describe a method for creating digital twins of live and/or hypothetical insider threat detection enterprises for the purpose of performing test and evaluation activities on continuous monitoring systems that are sensitive to disruptions. In this work, we use UML Activity Diagrams to leverage the integrated simulation capabilities of Model-Based Systems Engineering (MBSE).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vivian_Zhang关注了科研通微信公众号
1秒前
万能图书馆应助Cruffin采纳,获得10
1秒前
1秒前
1秒前
2秒前
科研通AI6应助gr采纳,获得10
2秒前
3秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
机智的嚣发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
bzc_991222完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
科研通AI6应助以筱采纳,获得10
8秒前
9秒前
Yyyyy完成签到,获得积分10
9秒前
科研通AI6应助abx采纳,获得10
9秒前
lvlvlv发布了新的文献求助10
10秒前
星辰大海应助jjb采纳,获得10
10秒前
浪遏飞舟发布了新的文献求助10
10秒前
生动友绿发布了新的文献求助20
10秒前
sun448526发布了新的文献求助10
11秒前
bbbjddd发布了新的文献求助10
11秒前
hh发布了新的文献求助10
11秒前
kk应助xxxhhh采纳,获得10
12秒前
霜降应助xxxhhh采纳,获得10
12秒前
香蕉梨愁发布了新的文献求助10
12秒前
NexusExplorer应助xxxhhh采纳,获得10
12秒前
落羽完成签到,获得积分10
12秒前
xieyuanxing完成签到,获得积分10
12秒前
12秒前
One发布了新的文献求助10
12秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611136
求助须知:如何正确求助?哪些是违规求助? 4695588
关于积分的说明 14887339
捐赠科研通 4724378
什么是DOI,文献DOI怎么找? 2545469
邀请新用户注册赠送积分活动 1510168
关于科研通互助平台的介绍 1473143