清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Creating a Digital Twin of an Insider Threat Detection Enterprise Using Model-Based Systems Engineering

计算机科学 内部威胁 入侵检测系统 统一建模语言 软件工程 可执行文件 知情人 系统工程 软件 计算机安全 工程类 操作系统 政治学 法学
作者
James D. Lee,Ahmad Alghamdi,Abbas K. Zaidi
标识
DOI:10.1109/syscon53536.2022.9773890
摘要

Inference Enterprise Modeling (IEM) is a methodology developed to address test and evaluation limitations that insider threat detection enterprises face due to a lack of ground truth and/or missing data. IEM uses a collection of statistical, data processing, analysis, and machine learning techniques to estimate and forecast the performance of these enterprises. As part of developing the IEM method, models satisfying various detection system evaluation requirements were created. In this work, we extend IEM as a digital twin generation technique by representing modeled processes as executable UML Activity Diagrams and tracing solution processes to problem requirements using ontologies. Using the proposed framework, we can rapidly prototype a digital twin of a detection system that can also be imported and executed in systems engineering simulation software tools such as Cameo Enterprise Architecture Simulation Toolkit. Cyber security and threat detection is a continuous process that requires regular maintenance and testing throughout its lifecycle, but there often exists access issues for sensitive and private data and proprietary detection model details to perform adequate test and evaluation activities in the live production environment. To solve this issue, organizations can use a digital twin technique to create a real-time virtual counterpart of the physical system. We describe a method for creating digital twins of live and/or hypothetical insider threat detection enterprises for the purpose of performing test and evaluation activities on continuous monitoring systems that are sensitive to disruptions. In this work, we use UML Activity Diagrams to leverage the integrated simulation capabilities of Model-Based Systems Engineering (MBSE).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
friend516完成签到 ,获得积分10
9秒前
16秒前
淡定自中发布了新的文献求助10
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
45秒前
51秒前
可夫司机完成签到 ,获得积分10
1分钟前
CadoreK完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
linqitc发布了新的文献求助10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
ffff完成签到 ,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
2分钟前
lph完成签到 ,获得积分10
2分钟前
DJ_Tokyo完成签到,获得积分0
2分钟前
yaya完成签到 ,获得积分10
2分钟前
3分钟前
zhangsan完成签到,获得积分10
3分钟前
靓丽奇迹完成签到 ,获得积分10
3分钟前
3分钟前
和风完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助舒适的大有采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
冰凌心恋完成签到,获得积分10
4分钟前
沉静问芙完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534541
求助须知:如何正确求助?哪些是违规求助? 4622572
关于积分的说明 14582648
捐赠科研通 4562692
什么是DOI,文献DOI怎么找? 2500318
邀请新用户注册赠送积分活动 1479848
关于科研通互助平台的介绍 1451059