iPReditor-CMG: Improving a predictive RNA editor for crop mitochondrial genomes using genomic sequence features and an optimal support vector machine

计算生物学 生物 基因组 支持向量机 线粒体DNA RNA编辑 基因 遗传学 核糖核酸 计算机科学 人工智能
作者
Sidong Qin,Yanjun Fan,Shengnan Hu,Yongqiang Wang,Ziqi Wang,Yixiang Cao,Qiyuan Liu,Siqiao Tan,Zhijun Dai,Wei Zhou
出处
期刊:Phytochemistry [Elsevier]
卷期号:200: 113222-113222
标识
DOI:10.1016/j.phytochem.2022.113222
摘要

In crops, RNA editing is one of the most important post-transcriptional processes in which specific cytidines (C) in virtually all mitochondrial protein-coding genes are converted to uridines (U). Despite extensive recent research in RNA editing, exploring all of the C-to-U editing events efficiently on the genomic scale remains challengeable. Developing accurate prediction methods for the detection of RNA editing sites would dramatically reduce experimental determination. Therefore, we propose a novel method, iPReditor-CMG (improved predictive RNA editor for crop mitochondrial genomes), to predict crop mitochondrial editing sites using genome sequence and an optimised support vector machine (SVM). We first selected three mitochondrial genomes with known RNA editing sites from Arabidopsis thaliana, Brassica napus and Oryza sativa, released by NCBI, as the training and test sets. The genes and their transcripts from self-sequenced tobacco mitochondrial ATPase were selected as the validation set. The iPReditor-CMG first coded the genome sequences as numerical vectors and then performed an efficient feature selection on the high-dimensional feature space, where the SVM was employed in feature selection and following modelling. The average independent prediction accuracy of intraspecific editing sites across three species was 0.85, and up to 0.91 in A. thaliana, which outperformed the reference models. For the interspecific independent prediction, the prediction accuracy between dicotyledons was 0.78 and the accuracy between dicotyledons and monocotyledons was 0.56, which implies that there might be similarity in the C-to-U editing mechanism in close relatives. Finally, the best model was identified with an independent test accuracy of 0.91 and an AUC of 0.88, which suggested that five unreported feature sequences, i.e. TGACA, ACAAC, GTAGA, CCGTT and TAACA, are closely associated with the editing phenomenon. Multiple tests supported that the iPReditor-CMG could be effectively applied to predict editing sites in crop mitochondria, which may further contribute to understanding the mechanisms of site editing and post-transcriptional events in crop mitochondria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助细心孤丹采纳,获得10
刚刚
Hello应助xu采纳,获得10
1秒前
小王同志完成签到,获得积分10
4秒前
烟花应助晨曦采纳,获得10
4秒前
来来来完成签到,获得积分10
6秒前
研友_xnExPL完成签到,获得积分10
9秒前
脑洞疼应助星星采纳,获得10
9秒前
12秒前
12秒前
共享精神应助BIANYAN采纳,获得10
13秒前
13秒前
nicolin发布了新的文献求助10
14秒前
SciGPT应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得30
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
遥远的尧应助科研通管家采纳,获得10
15秒前
tianzml0应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
16秒前
Akim应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
17秒前
zhong完成签到,获得积分10
18秒前
xu发布了新的文献求助10
19秒前
业主小丹发布了新的文献求助10
20秒前
佑佑完成签到,获得积分10
20秒前
家里有头小毛驴完成签到,获得积分10
20秒前
一一完成签到,获得积分10
21秒前
CurryFan发布了新的文献求助20
22秒前
24秒前
24秒前
QQQQQQQW发布了新的文献求助10
24秒前
swtdna完成签到,获得积分10
24秒前
爆米花应助CHEN采纳,获得10
25秒前
Moihan发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164313
求助须知:如何正确求助?哪些是违规求助? 2815082
关于积分的说明 7907553
捐赠科研通 2474643
什么是DOI,文献DOI怎么找? 1317610
科研通“疑难数据库(出版商)”最低求助积分说明 631870
版权声明 602228