Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics

共病 机器学习 人工智能 计算机科学 逻辑回归 梯度升压 疾病 卷积神经网络 医学 随机森林 精神科 内科学
作者
Shahadat Uddin,Shangzhou Wang,Haohui Lu,Arif Khan,Farshid Hajati,Matloob Khushi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117761-117761 被引量:28
标识
DOI:10.1016/j.eswa.2022.117761
摘要

The prevalence of chronic disease comorbidity and multimorbidity is a significant health issue worldwide. In many cases, for individuals, the occurrence of one chronic disease leads to the development of one or more other chronic conditions. This exerts a significant burden on healthcare systems globally. Disease comorbidity is defined as the simultaneous occurrence of more than one disease. And a person having more than two comorbidities is referred to as multimorbid. This study followed a machine learning and network analytics-based approach to predict major chronic disease comorbidity and multimorbidity. In doing so, this study first extracted patient networks from the research dataset. In such networks, nodes represent patients and edges between two nodes indicate that the underlying two patients had at least one common disease. This study also considered other relevant features from patients' health trajectories. Out of the five machine learning models considered in this study (Logistic regression, k-nearest neighbours, Naïve Bayes, Random Forest and Extreme Gradient Boosting) and two deep learning models (Multilayer perceptrons and Convolutional neural networks), Extreme Gradient Boosting showed the highest accuracy (95.05%), followed by the Convolutional neural networks (91.67%). The attribute of the number of episodes from the patient trajectory had been found as the most important feature, followed by the patient network attribute of transitivity. Other relevant results (feature correlation, variable clustering, confusion matrix and kernel density estimation) were also reported and discussed. The findings and insights of this study can help healthcare stakeholders and policymakers mitigate the negative impact of disease comorbidity and multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助未何采纳,获得30
2秒前
牧紊发布了新的文献求助10
2秒前
希望天下0贩的0应助pearhi采纳,获得30
3秒前
3秒前
guard发布了新的文献求助10
4秒前
叶彤完成签到,获得积分20
4秒前
张mingyu123发布了新的文献求助10
4秒前
科研通AI5应助上帝掷骰子采纳,获得20
4秒前
5秒前
5秒前
上官若男应助husaheng采纳,获得10
5秒前
7秒前
hilapo完成签到,获得积分10
7秒前
8秒前
8秒前
小蘑菇应助动听的康乃馨采纳,获得10
8秒前
科目三应助夜王采纳,获得10
8秒前
哪位发布了新的文献求助10
8秒前
松与杉完成签到,获得积分20
9秒前
叶彤发布了新的文献求助10
9秒前
七七发布了新的文献求助10
9秒前
9秒前
ma发布了新的文献求助10
10秒前
自然的李完成签到 ,获得积分10
11秒前
1223发布了新的文献求助10
12秒前
13秒前
科研通AI5应助wudidafei采纳,获得10
14秒前
14秒前
15秒前
森宝完成签到,获得积分10
15秒前
海诺完成签到 ,获得积分10
15秒前
shy完成签到 ,获得积分10
16秒前
16秒前
accepted完成签到,获得积分10
16秒前
Owen应助1223采纳,获得10
17秒前
19秒前
夜王发布了新的文献求助10
21秒前
guishen10发布了新的文献求助10
21秒前
21秒前
搜集达人应助机智灵薇采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049114
求助须知:如何正确求助?哪些是违规求助? 4277221
关于积分的说明 13333105
捐赠科研通 4091866
什么是DOI,文献DOI怎么找? 2239302
邀请新用户注册赠送积分活动 1246171
关于科研通互助平台的介绍 1174771