Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics

共病 机器学习 人工智能 计算机科学 逻辑回归 梯度升压 疾病 卷积神经网络 医学 随机森林 精神科 内科学
作者
Shahadat Uddin,Shangzhou Wang,Haohui Lu,Arif Khan,Farshid Hajati,Matloob Khushi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117761-117761 被引量:18
标识
DOI:10.1016/j.eswa.2022.117761
摘要

The prevalence of chronic disease comorbidity and multimorbidity is a significant health issue worldwide. In many cases, for individuals, the occurrence of one chronic disease leads to the development of one or more other chronic conditions. This exerts a significant burden on healthcare systems globally. Disease comorbidity is defined as the simultaneous occurrence of more than one disease. And a person having more than two comorbidities is referred to as multimorbid. This study followed a machine learning and network analytics-based approach to predict major chronic disease comorbidity and multimorbidity. In doing so, this study first extracted patient networks from the research dataset. In such networks, nodes represent patients and edges between two nodes indicate that the underlying two patients had at least one common disease. This study also considered other relevant features from patients' health trajectories. Out of the five machine learning models considered in this study (Logistic regression, k-nearest neighbours, Naïve Bayes, Random Forest and Extreme Gradient Boosting) and two deep learning models (Multilayer perceptrons and Convolutional neural networks), Extreme Gradient Boosting showed the highest accuracy (95.05%), followed by the Convolutional neural networks (91.67%). The attribute of the number of episodes from the patient trajectory had been found as the most important feature, followed by the patient network attribute of transitivity. Other relevant results (feature correlation, variable clustering, confusion matrix and kernel density estimation) were also reported and discussed. The findings and insights of this study can help healthcare stakeholders and policymakers mitigate the negative impact of disease comorbidity and multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gmc发布了新的文献求助10
1秒前
1秒前
2秒前
善学以致用应助Mian采纳,获得10
2秒前
学科共进发布了新的文献求助60
3秒前
LWJ完成签到 ,获得积分10
3秒前
3秒前
缓慢的糖豆完成签到,获得积分10
4秒前
阉太狼完成签到,获得积分10
4秒前
5秒前
soory完成签到,获得积分10
6秒前
任性的傲柏完成签到,获得积分10
6秒前
lwk205完成签到,获得积分0
6秒前
7秒前
一一完成签到,获得积分10
7秒前
7秒前
7秒前
高中生完成签到,获得积分10
8秒前
8秒前
8秒前
希望天下0贩的0应助TT采纳,获得10
9秒前
xxegt完成签到 ,获得积分10
9秒前
10秒前
爱吃泡芙发布了新的文献求助10
10秒前
susu完成签到,获得积分10
12秒前
会神发布了新的文献求助10
12秒前
KK完成签到,获得积分10
13秒前
充电宝应助justin采纳,获得10
15秒前
16秒前
Ch完成签到 ,获得积分10
17秒前
19秒前
ajun完成签到,获得积分10
19秒前
19秒前
春江完成签到,获得积分10
19秒前
19秒前
漂亮的松思完成签到,获得积分20
22秒前
22秒前
xiuwen发布了新的文献求助10
23秒前
黑衣人的秘密完成签到,获得积分10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808