Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics

共病 机器学习 人工智能 计算机科学 逻辑回归 梯度升压 疾病 卷积神经网络 医学 随机森林 精神科 内科学
作者
Shahadat Uddin,Shangzhou Wang,Haohui Lu,Arif Khan,Farshid Hajati,Matloob Khushi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117761-117761 被引量:33
标识
DOI:10.1016/j.eswa.2022.117761
摘要

The prevalence of chronic disease comorbidity and multimorbidity is a significant health issue worldwide. In many cases, for individuals, the occurrence of one chronic disease leads to the development of one or more other chronic conditions. This exerts a significant burden on healthcare systems globally. Disease comorbidity is defined as the simultaneous occurrence of more than one disease. And a person having more than two comorbidities is referred to as multimorbid. This study followed a machine learning and network analytics-based approach to predict major chronic disease comorbidity and multimorbidity. In doing so, this study first extracted patient networks from the research dataset. In such networks, nodes represent patients and edges between two nodes indicate that the underlying two patients had at least one common disease. This study also considered other relevant features from patients' health trajectories. Out of the five machine learning models considered in this study (Logistic regression, k-nearest neighbours, Naïve Bayes, Random Forest and Extreme Gradient Boosting) and two deep learning models (Multilayer perceptrons and Convolutional neural networks), Extreme Gradient Boosting showed the highest accuracy (95.05%), followed by the Convolutional neural networks (91.67%). The attribute of the number of episodes from the patient trajectory had been found as the most important feature, followed by the patient network attribute of transitivity. Other relevant results (feature correlation, variable clustering, confusion matrix and kernel density estimation) were also reported and discussed. The findings and insights of this study can help healthcare stakeholders and policymakers mitigate the negative impact of disease comorbidity and multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qaz完成签到 ,获得积分10
3秒前
粥粥完成签到,获得积分0
3秒前
ycyang发布了新的文献求助30
4秒前
XS_QI发布了新的文献求助10
4秒前
606完成签到,获得积分10
5秒前
科研通AI6.2应助yj1506837246采纳,获得10
6秒前
黄靓靓完成签到,获得积分20
6秒前
哲欣发布了新的文献求助10
7秒前
8秒前
别止完成签到,获得积分10
10秒前
tting完成签到 ,获得积分10
10秒前
lulu完成签到 ,获得积分10
10秒前
时生完成签到 ,获得积分10
12秒前
嘿嘿应助ycyang采纳,获得10
14秒前
上官若男应助Dr.c采纳,获得10
15秒前
包佳梁完成签到,获得积分10
16秒前
啧啧完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
19秒前
田様应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
欢喜夏之应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
脑洞疼应助隐形的从阳采纳,获得100
20秒前
bkagyin应助Chase采纳,获得10
21秒前
玛卡完成签到,获得积分20
22秒前
SciGPT应助XS_QI采纳,获得10
23秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847541
求助须知:如何正确求助?哪些是违规求助? 6227303
关于积分的说明 15620489
捐赠科研通 4964224
什么是DOI,文献DOI怎么找? 2676489
邀请新用户注册赠送积分活动 1621042
关于科研通互助平台的介绍 1576969