Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics

共病 机器学习 人工智能 计算机科学 逻辑回归 梯度升压 疾病 卷积神经网络 医学 随机森林 精神科 内科学
作者
Shahadat Uddin,Shangzhou Wang,Haohui Lu,Arif Khan,Farshid Hajati,Matloob Khushi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117761-117761 被引量:33
标识
DOI:10.1016/j.eswa.2022.117761
摘要

The prevalence of chronic disease comorbidity and multimorbidity is a significant health issue worldwide. In many cases, for individuals, the occurrence of one chronic disease leads to the development of one or more other chronic conditions. This exerts a significant burden on healthcare systems globally. Disease comorbidity is defined as the simultaneous occurrence of more than one disease. And a person having more than two comorbidities is referred to as multimorbid. This study followed a machine learning and network analytics-based approach to predict major chronic disease comorbidity and multimorbidity. In doing so, this study first extracted patient networks from the research dataset. In such networks, nodes represent patients and edges between two nodes indicate that the underlying two patients had at least one common disease. This study also considered other relevant features from patients' health trajectories. Out of the five machine learning models considered in this study (Logistic regression, k-nearest neighbours, Naïve Bayes, Random Forest and Extreme Gradient Boosting) and two deep learning models (Multilayer perceptrons and Convolutional neural networks), Extreme Gradient Boosting showed the highest accuracy (95.05%), followed by the Convolutional neural networks (91.67%). The attribute of the number of episodes from the patient trajectory had been found as the most important feature, followed by the patient network attribute of transitivity. Other relevant results (feature correlation, variable clustering, confusion matrix and kernel density estimation) were also reported and discussed. The findings and insights of this study can help healthcare stakeholders and policymakers mitigate the negative impact of disease comorbidity and multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77发布了新的文献求助10
1秒前
HHR123456完成签到,获得积分20
1秒前
1秒前
析界成微完成签到,获得积分10
1秒前
1秒前
1秒前
小亮完成签到,获得积分10
1秒前
1秒前
研友_8KKkb8发布了新的文献求助150
1秒前
去码头整点薯条完成签到,获得积分10
1秒前
小蘑菇应助仁爱路血小板采纳,获得10
1秒前
唠叨的锦程完成签到,获得积分10
2秒前
YaRu应助哈哈哈采纳,获得10
2秒前
俺村俺忒帅完成签到,获得积分10
2秒前
求知完成签到,获得积分10
3秒前
丘比特应助CYJ采纳,获得30
3秒前
搜集达人应助木子采纳,获得10
3秒前
任性豆芽发布了新的文献求助10
4秒前
bkagyin应助青山采纳,获得10
4秒前
今后应助zz采纳,获得10
4秒前
标致的耷完成签到,获得积分20
4秒前
烟花应助niNe3YUE采纳,获得10
4秒前
xiaolei001应助整齐的豆芽采纳,获得10
5秒前
aurora发布了新的文献求助10
5秒前
Albert完成签到,获得积分10
5秒前
jlj完成签到,获得积分10
6秒前
迷路的紫发布了新的文献求助10
6秒前
高大峻熙完成签到,获得积分10
6秒前
tguczf发布了新的文献求助10
6秒前
Daisypharma发布了新的文献求助10
6秒前
7秒前
xu完成签到,获得积分10
7秒前
7秒前
归尘发布了新的文献求助10
7秒前
7秒前
天天快乐应助王南晰采纳,获得10
8秒前
ovo发布了新的文献求助10
8秒前
竹子完成签到,获得积分10
9秒前
研友_Zlx3aZ发布了新的文献求助10
9秒前
上官若男应助一支梦笔采纳,获得10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587207
求助须知:如何正确求助?哪些是违规求助? 4670321
关于积分的说明 14782456
捐赠科研通 4622355
什么是DOI,文献DOI怎么找? 2531197
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066