Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics

共病 机器学习 人工智能 计算机科学 逻辑回归 梯度升压 疾病 卷积神经网络 医学 随机森林 精神科 内科学
作者
Shahadat Uddin,Shangzhou Wang,Haohui Lu,Arif Khan,Farshid Hajati,Matloob Khushi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117761-117761 被引量:33
标识
DOI:10.1016/j.eswa.2022.117761
摘要

The prevalence of chronic disease comorbidity and multimorbidity is a significant health issue worldwide. In many cases, for individuals, the occurrence of one chronic disease leads to the development of one or more other chronic conditions. This exerts a significant burden on healthcare systems globally. Disease comorbidity is defined as the simultaneous occurrence of more than one disease. And a person having more than two comorbidities is referred to as multimorbid. This study followed a machine learning and network analytics-based approach to predict major chronic disease comorbidity and multimorbidity. In doing so, this study first extracted patient networks from the research dataset. In such networks, nodes represent patients and edges between two nodes indicate that the underlying two patients had at least one common disease. This study also considered other relevant features from patients' health trajectories. Out of the five machine learning models considered in this study (Logistic regression, k-nearest neighbours, Naïve Bayes, Random Forest and Extreme Gradient Boosting) and two deep learning models (Multilayer perceptrons and Convolutional neural networks), Extreme Gradient Boosting showed the highest accuracy (95.05%), followed by the Convolutional neural networks (91.67%). The attribute of the number of episodes from the patient trajectory had been found as the most important feature, followed by the patient network attribute of transitivity. Other relevant results (feature correlation, variable clustering, confusion matrix and kernel density estimation) were also reported and discussed. The findings and insights of this study can help healthcare stakeholders and policymakers mitigate the negative impact of disease comorbidity and multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助认真读文献采纳,获得10
1秒前
1秒前
Jiaxixi发布了新的文献求助10
1秒前
天天快乐应助初七123采纳,获得10
1秒前
1秒前
cgy应助典雅若采纳,获得30
2秒前
2秒前
jing发布了新的文献求助30
2秒前
2秒前
清茶韵心发布了新的文献求助10
3秒前
3秒前
Ava应助悦耳以旋采纳,获得10
4秒前
zxm完成签到,获得积分10
4秒前
挖掘机完成签到,获得积分10
4秒前
鱼粥很好发布了新的文献求助10
4秒前
深蓝发布了新的文献求助10
4秒前
penhuodragon关注了科研通微信公众号
5秒前
Akim应助加油女王采纳,获得10
5秒前
ll完成签到 ,获得积分20
5秒前
6秒前
htht完成签到,获得积分20
6秒前
slgzhangtao完成签到,获得积分10
6秒前
帅玉玉发布了新的文献求助10
6秒前
满意花生发布了新的文献求助10
7秒前
www123qe发布了新的文献求助10
8秒前
酷波er应助灵巧汉堡采纳,获得10
8秒前
在下想发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助汤圆呢醒醒采纳,获得30
9秒前
10秒前
10秒前
10秒前
清爽的乐曲完成签到,获得积分10
10秒前
独自人生完成签到,获得积分10
11秒前
科研通AI6应助积极的夏天采纳,获得10
12秒前
Silieze完成签到,获得积分10
12秒前
可爱的函函应助112采纳,获得10
13秒前
13秒前
核动力驴发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997