Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics

共病 机器学习 人工智能 计算机科学 逻辑回归 梯度升压 疾病 卷积神经网络 医学 随机森林 精神科 内科学
作者
Shahadat Uddin,Shangzhou Wang,Haohui Lu,Arif Khan,Farshid Hajati,Matloob Khushi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117761-117761 被引量:19
标识
DOI:10.1016/j.eswa.2022.117761
摘要

The prevalence of chronic disease comorbidity and multimorbidity is a significant health issue worldwide. In many cases, for individuals, the occurrence of one chronic disease leads to the development of one or more other chronic conditions. This exerts a significant burden on healthcare systems globally. Disease comorbidity is defined as the simultaneous occurrence of more than one disease. And a person having more than two comorbidities is referred to as multimorbid. This study followed a machine learning and network analytics-based approach to predict major chronic disease comorbidity and multimorbidity. In doing so, this study first extracted patient networks from the research dataset. In such networks, nodes represent patients and edges between two nodes indicate that the underlying two patients had at least one common disease. This study also considered other relevant features from patients' health trajectories. Out of the five machine learning models considered in this study (Logistic regression, k-nearest neighbours, Naïve Bayes, Random Forest and Extreme Gradient Boosting) and two deep learning models (Multilayer perceptrons and Convolutional neural networks), Extreme Gradient Boosting showed the highest accuracy (95.05%), followed by the Convolutional neural networks (91.67%). The attribute of the number of episodes from the patient trajectory had been found as the most important feature, followed by the patient network attribute of transitivity. Other relevant results (feature correlation, variable clustering, confusion matrix and kernel density estimation) were also reported and discussed. The findings and insights of this study can help healthcare stakeholders and policymakers mitigate the negative impact of disease comorbidity and multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JM发布了新的文献求助10
刚刚
闪闪的洋葱完成签到,获得积分10
1秒前
1秒前
1秒前
HAL9000发布了新的文献求助10
1秒前
D33sama完成签到,获得积分10
2秒前
2秒前
hbb完成签到,获得积分10
2秒前
jiaru发布了新的文献求助10
3秒前
拼搏蜻蜓完成签到,获得积分10
3秒前
3秒前
蜡笔小舒发布了新的文献求助10
3秒前
yangjiali完成签到 ,获得积分10
3秒前
RR发布了新的文献求助10
3秒前
玖文发布了新的文献求助10
3秒前
DDDD源完成签到,获得积分10
4秒前
4秒前
陈军发布了新的文献求助10
4秒前
邱文发布了新的文献求助30
4秒前
轻松砖头发布了新的文献求助10
4秒前
SOS完成签到,获得积分10
4秒前
闫俊发布了新的文献求助10
4秒前
4秒前
bey完成签到,获得积分10
5秒前
5秒前
魔幻的半雪完成签到,获得积分10
5秒前
斯文败类应助10采纳,获得10
5秒前
嗡嗡完成签到,获得积分10
5秒前
6秒前
MrH完成签到,获得积分10
6秒前
6秒前
z掌握一下完成签到,获得积分10
6秒前
wulin314发布了新的文献求助20
7秒前
小蘑菇应助HAL9000采纳,获得10
7秒前
7秒前
hhm发布了新的文献求助10
7秒前
穆易羊完成签到 ,获得积分10
8秒前
在水一方应助Gnor采纳,获得10
8秒前
8秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650