Efficient fall detection in four directions based on smart insoles and RDAE-LSTM model

计算机科学 加速度计 自编码 人工智能 特征(语言学) 特征提取 深度学习 模式识别(心理学) 机器学习 计算机视觉 语言学 操作系统 哲学
作者
Zhirong Lin,Zengwei Wang,Houde Dai,Xuke Xia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117661-117661 被引量:12
标识
DOI:10.1016/j.eswa.2022.117661
摘要

Efficient fall detection is significant for the elderly, persons with motor symptoms, and people who perform risky actions, with four types of falling postures. However, most studies focused on distinguishing fall or not, although the fall direction information is crucial to turn on the corresponding part of the airbag or quickly assess the damage level. To accurately, rapidly, and reliably recognize different directional falls (forward, backward, left, and right) during daily life, this study proposes a novel fall detection methodology based on a pair of commercial lightweight smart insoles and a long short-term memory (LSTM) framework with a trained referencing denoising autoencoder (RDAE). Compared with traditional autoencoders, the referencing sub-path, i.e., RDAE, is additionally attached to achieve the automatic feature extraction. A pair of wireless in-shoe insoles (OpenGo, Moticon GmbH), each side equipped with 13 plantar pressure sensors and a tri-axial accelerometer, was employed to capture comprehensive spatial-temporal gait parameters. Hence an effective response to a fall, together with the estimation of the corresponding direction, can be accomplished, where the accuracy and response time are two primary concerns. The proposed RDAE-LSTM network provides a reliable testing result in classification, with 98.6% accuracy and 8.7 ms response time for determining fall directions, demonstrating a more convincing performance than other algorithms. The proposed methodology is an unobtrusive choice for users whose daily life is not affected by the fall detection device. The RDAE-LSTM model was proven to accurately and quickly recognize falls in four directions for the unbalanced fall detection dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
流水完成签到,获得积分10
1秒前
DDd发布了新的文献求助10
1秒前
麻师加药完成签到,获得积分10
2秒前
小鱼应助皮卡丘大王采纳,获得10
3秒前
云柔竹劲完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
星辰大海应助王宝宝采纳,获得10
5秒前
西瓜头子发布了新的文献求助30
5秒前
6秒前
Franky发布了新的文献求助10
6秒前
乐观的名完成签到,获得积分10
6秒前
sssaasa完成签到,获得积分10
7秒前
7秒前
7秒前
美好的若枫完成签到,获得积分10
8秒前
英俊的铭应助啦啦啦采纳,获得10
8秒前
8秒前
zhao完成签到,获得积分10
9秒前
852应助xgg采纳,获得10
9秒前
浮游应助陈圈圈采纳,获得10
9秒前
小蘑菇应助陈圈圈采纳,获得10
9秒前
三七完成签到,获得积分20
9秒前
ss关注了科研通微信公众号
10秒前
小白i完成签到,获得积分10
10秒前
Lucas应助qiang采纳,获得10
10秒前
10秒前
婕婕子完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助Rain采纳,获得10
11秒前
超级佳倍发布了新的文献求助10
11秒前
英俊的铭应助优美的幻桃采纳,获得10
12秒前
12秒前
12秒前
共享精神应助huhuhuhu采纳,获得10
12秒前
Inspiring发布了新的文献求助10
13秒前
Zurlliant发布了新的文献求助10
13秒前
14秒前
Hello应助xiaoyuan采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577