Efficient fall detection in four directions based on smart insoles and RDAE-LSTM model

计算机科学 加速度计 自编码 人工智能 特征(语言学) 特征提取 深度学习 模式识别(心理学) 机器学习 计算机视觉 语言学 操作系统 哲学
作者
Zhirong Lin,Zengwei Wang,Houde Dai,Xuke Xia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117661-117661 被引量:12
标识
DOI:10.1016/j.eswa.2022.117661
摘要

Efficient fall detection is significant for the elderly, persons with motor symptoms, and people who perform risky actions, with four types of falling postures. However, most studies focused on distinguishing fall or not, although the fall direction information is crucial to turn on the corresponding part of the airbag or quickly assess the damage level. To accurately, rapidly, and reliably recognize different directional falls (forward, backward, left, and right) during daily life, this study proposes a novel fall detection methodology based on a pair of commercial lightweight smart insoles and a long short-term memory (LSTM) framework with a trained referencing denoising autoencoder (RDAE). Compared with traditional autoencoders, the referencing sub-path, i.e., RDAE, is additionally attached to achieve the automatic feature extraction. A pair of wireless in-shoe insoles (OpenGo, Moticon GmbH), each side equipped with 13 plantar pressure sensors and a tri-axial accelerometer, was employed to capture comprehensive spatial-temporal gait parameters. Hence an effective response to a fall, together with the estimation of the corresponding direction, can be accomplished, where the accuracy and response time are two primary concerns. The proposed RDAE-LSTM network provides a reliable testing result in classification, with 98.6% accuracy and 8.7 ms response time for determining fall directions, demonstrating a more convincing performance than other algorithms. The proposed methodology is an unobtrusive choice for users whose daily life is not affected by the fall detection device. The RDAE-LSTM model was proven to accurately and quickly recognize falls in four directions for the unbalanced fall detection dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3123939715发布了新的文献求助10
刚刚
刚刚
华仔应助静香采纳,获得10
1秒前
CodeCraft应助老地方采纳,获得10
1秒前
3秒前
天天快乐应助双桅船采纳,获得10
4秒前
4秒前
4秒前
4秒前
桃子完成签到 ,获得积分10
4秒前
帅气到爆炸的我完成签到,获得积分20
5秒前
ymk完成签到,获得积分10
5秒前
chemzhh完成签到,获得积分10
5秒前
酷波er应助依帕尔采纳,获得10
6秒前
6秒前
6秒前
han发布了新的文献求助10
6秒前
田様应助乔1采纳,获得10
6秒前
石头完成签到,获得积分10
7秒前
专注的曼卉完成签到 ,获得积分10
7秒前
希望天下0贩的0应助LLL采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
WILAY889发布了新的文献求助10
8秒前
8秒前
vincentbioinfo完成签到,获得积分10
8秒前
violet完成签到,获得积分10
8秒前
levi发布了新的文献求助10
8秒前
Gtx发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
静香完成签到,获得积分10
10秒前
10秒前
沐西完成签到 ,获得积分10
10秒前
顾初安发布了新的文献求助10
10秒前
朴素若枫完成签到,获得积分10
10秒前
10秒前
老地方完成签到,获得积分10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620157
求助须知:如何正确求助?哪些是违规求助? 4704645
关于积分的说明 14928760
捐赠科研通 4760959
什么是DOI,文献DOI怎么找? 2550765
邀请新用户注册赠送积分活动 1513518
关于科研通互助平台的介绍 1474498