Efficient fall detection in four directions based on smart insoles and RDAE-LSTM model

计算机科学 加速度计 自编码 人工智能 特征(语言学) 特征提取 深度学习 模式识别(心理学) 机器学习 计算机视觉 语言学 哲学 操作系统
作者
Zhirong Lin,Zengwei Wang,Houde Dai,Xuke Xia
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117661-117661 被引量:12
标识
DOI:10.1016/j.eswa.2022.117661
摘要

Efficient fall detection is significant for the elderly, persons with motor symptoms, and people who perform risky actions, with four types of falling postures. However, most studies focused on distinguishing fall or not, although the fall direction information is crucial to turn on the corresponding part of the airbag or quickly assess the damage level. To accurately, rapidly, and reliably recognize different directional falls (forward, backward, left, and right) during daily life, this study proposes a novel fall detection methodology based on a pair of commercial lightweight smart insoles and a long short-term memory (LSTM) framework with a trained referencing denoising autoencoder (RDAE). Compared with traditional autoencoders, the referencing sub-path, i.e., RDAE, is additionally attached to achieve the automatic feature extraction. A pair of wireless in-shoe insoles (OpenGo, Moticon GmbH), each side equipped with 13 plantar pressure sensors and a tri-axial accelerometer, was employed to capture comprehensive spatial-temporal gait parameters. Hence an effective response to a fall, together with the estimation of the corresponding direction, can be accomplished, where the accuracy and response time are two primary concerns. The proposed RDAE-LSTM network provides a reliable testing result in classification, with 98.6% accuracy and 8.7 ms response time for determining fall directions, demonstrating a more convincing performance than other algorithms. The proposed methodology is an unobtrusive choice for users whose daily life is not affected by the fall detection device. The RDAE-LSTM model was proven to accurately and quickly recognize falls in four directions for the unbalanced fall detection dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaolulu发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
真的不想干活了完成签到,获得积分10
1秒前
美丽的依琴完成签到,获得积分10
2秒前
Xin完成签到,获得积分10
8秒前
Aurora.H完成签到,获得积分10
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
duckspy发布了新的文献求助10
14秒前
14秒前
14秒前
xiaowan完成签到,获得积分10
15秒前
Terry完成签到,获得积分10
16秒前
张张张哈哈哈完成签到,获得积分10
16秒前
Research完成签到 ,获得积分10
16秒前
称心采枫完成签到 ,获得积分0
17秒前
17秒前
新新新新新发顶刊完成签到 ,获得积分10
18秒前
L3完成签到,获得积分10
19秒前
我是科研小能手完成签到,获得积分10
19秒前
风中的小丸子完成签到,获得积分10
20秒前
20秒前
时尚俊驰发布了新的文献求助10
21秒前
21秒前
21秒前
Grin完成签到,获得积分10
22秒前
周周完成签到,获得积分20
22秒前
23秒前
liufan完成签到 ,获得积分10
25秒前
guitarist完成签到 ,获得积分10
25秒前
饮汽水完成签到,获得积分10
25秒前
25秒前
yoyo20012623完成签到,获得积分10
26秒前
伦语发布了新的文献求助10
26秒前
韵苑完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022