Efficient fall detection in four directions based on smart insoles and RDAE-LSTM model

计算机科学 加速度计 自编码 人工智能 特征(语言学) 特征提取 深度学习 模式识别(心理学) 机器学习 计算机视觉 语言学 操作系统 哲学
作者
Zhirong Lin,Zengwei Wang,Houde Dai,Xuke Xia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117661-117661 被引量:12
标识
DOI:10.1016/j.eswa.2022.117661
摘要

Efficient fall detection is significant for the elderly, persons with motor symptoms, and people who perform risky actions, with four types of falling postures. However, most studies focused on distinguishing fall or not, although the fall direction information is crucial to turn on the corresponding part of the airbag or quickly assess the damage level. To accurately, rapidly, and reliably recognize different directional falls (forward, backward, left, and right) during daily life, this study proposes a novel fall detection methodology based on a pair of commercial lightweight smart insoles and a long short-term memory (LSTM) framework with a trained referencing denoising autoencoder (RDAE). Compared with traditional autoencoders, the referencing sub-path, i.e., RDAE, is additionally attached to achieve the automatic feature extraction. A pair of wireless in-shoe insoles (OpenGo, Moticon GmbH), each side equipped with 13 plantar pressure sensors and a tri-axial accelerometer, was employed to capture comprehensive spatial-temporal gait parameters. Hence an effective response to a fall, together with the estimation of the corresponding direction, can be accomplished, where the accuracy and response time are two primary concerns. The proposed RDAE-LSTM network provides a reliable testing result in classification, with 98.6% accuracy and 8.7 ms response time for determining fall directions, demonstrating a more convincing performance than other algorithms. The proposed methodology is an unobtrusive choice for users whose daily life is not affected by the fall detection device. The RDAE-LSTM model was proven to accurately and quickly recognize falls in four directions for the unbalanced fall detection dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dearjw1655完成签到,获得积分10
刚刚
围城完成签到 ,获得积分10
刚刚
鲲鹏完成签到 ,获得积分10
2秒前
Hzml完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
爱沉淀的太阳花完成签到,获得积分10
3秒前
xueshidaheng完成签到,获得积分0
5秒前
无极微光应助白华苍松采纳,获得20
7秒前
kaiqiang完成签到,获得积分0
7秒前
鸡蛋酱完成签到 ,获得积分10
9秒前
溪泉完成签到,获得积分10
12秒前
12秒前
草木发布了新的文献求助10
12秒前
kyt完成签到 ,获得积分10
14秒前
咄咄完成签到 ,获得积分10
16秒前
笑点低的凉面完成签到,获得积分10
18秒前
19秒前
19秒前
EricSai完成签到,获得积分10
19秒前
chenkj完成签到,获得积分10
19秒前
ikun完成签到,获得积分10
19秒前
研友_ZA2B68完成签到,获得积分0
20秒前
zz完成签到 ,获得积分10
20秒前
小成完成签到 ,获得积分10
21秒前
heyseere完成签到,获得积分10
21秒前
Brief完成签到,获得积分0
21秒前
李新颖完成签到 ,获得积分10
22秒前
樊樊是渣子完成签到 ,获得积分20
22秒前
翟闻雨完成签到,获得积分10
23秒前
jkaaa完成签到,获得积分10
23秒前
24秒前
饱满绮波完成签到 ,获得积分10
24秒前
风信子完成签到,获得积分10
25秒前
丨墨月丨完成签到,获得积分10
25秒前
研友_nvebxL完成签到,获得积分10
26秒前
26秒前
赵怼怼完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590