WiVi: WiFi-Video Cross-Modal Fusion based Multi-Path Gait Recognition System

计算机科学 分类器(UML) 人工智能 步态 信道状态信息 频道(广播) 情态动词 路径(计算) 计算机视觉 实时计算 模式识别(心理学) 无线 计算机网络 电信 生理学 化学 高分子化学 生物
作者
Jinmeng Fan,Hao Zhou,Fengyu Zhou,Xiaoyan Wang,Zhi Liu,Xiang‐Yang Li
标识
DOI:10.1109/iwqos54832.2022.9812893
摘要

WiFi-based gait recognition is an attractive method for device-free user identification, but path-sensitive Channel State Information (CSI) hinders its application in multi-path environments, which exacerbates sampling and deployment costs (i.e., large number of samples and multiple specially placed devices). On the other hand, although video-based ideal CSI generation is promising for dramatically reducing samples, the missing environment-related information in the ideal CSI makes it unsuitable for general indoor scenarios with multiple walking paths.In this paper, we propose WiVi, a WiFi-video cross-modal fusion based multi-path gait recognition system which needs fewer samples and fewer devices simultaneously. When the subject walks naturally in the room, we determine whether he/she is walking on the predefined judgment paths with a K-Nearest Neighbors (KNN) classifier working on the WiFi-based human localization results. For each judgment path, we generate the ideal CSI through video-based simulation to decrease the number of needed samples, and adopt two separated neural networks (NNs) to fulfill environment-aware comparison among the ideal and measured CSIs. The first network is supervised by measured CSI samples, and learns to obtain the semi-ideal CSI features which contain the room-specific ‘accent’, i.e., the long-term environment influence normally caused by room layout. The second network is trained for similarity evaluation between the semi-ideal and measured features, with the existence of short-term environment influence such as channel variation or noises.We implement the prototype system and conduct extensive experiments to evaluate the performance. Experimental results show that WiVi’s recognition accuracy ranges from 85.4% for a 6-person group to 98.0% for a 3-person group. As compared with single-path gait recognition systems, we achieve average 113.8% performance improvement. As compared with the other multi-path gait recognition systems, we achieve similar or even better performance with needed samples being reduced by 57.1-93.7%

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pitto完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
栗子发布了新的文献求助10
3秒前
4秒前
十豆彡发布了新的文献求助10
4秒前
4秒前
冷板凳发布了新的文献求助10
5秒前
qqqqqqq完成签到,获得积分20
6秒前
丘比特应助Coconut采纳,获得10
6秒前
6秒前
小丸子关注了科研通微信公众号
6秒前
suliang完成签到,获得积分10
6秒前
Lucas应助第一步催化B采纳,获得10
7秒前
7秒前
LM879发布了新的文献求助10
8秒前
研友_O8W2PZ完成签到,获得积分10
8秒前
枝头的小熊猫完成签到,获得积分10
8秒前
panpanliumin完成签到,获得积分0
8秒前
9秒前
木木发布了新的文献求助10
9秒前
victor发布了新的文献求助10
9秒前
9秒前
10秒前
WWW关注了科研通微信公众号
10秒前
小新发布了新的文献求助10
10秒前
11秒前
科研通AI5应助小新撒浪嘿采纳,获得10
12秒前
36456657应助开心每一天采纳,获得10
12秒前
CC完成签到,获得积分10
13秒前
15秒前
CC发布了新的文献求助10
15秒前
小洛发布了新的文献求助10
16秒前
打打应助小汤采纳,获得10
16秒前
Hd发布了新的文献求助30
17秒前
Akim应助跳跃的盼柳采纳,获得10
17秒前
18秒前
大模型应助冷酷秋柳采纳,获得10
18秒前
今后应助su采纳,获得10
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483701
求助须知:如何正确求助?哪些是违规求助? 3072962
关于积分的说明 9128742
捐赠科研通 2764574
什么是DOI,文献DOI怎么找? 1517253
邀请新用户注册赠送积分活动 701974
科研通“疑难数据库(出版商)”最低求助积分说明 700831