Pore regulation of well-developed honeycomb-like carbon materials from Zizania latifolia for supercapacitors

超级电容器 材料科学 电容 多孔性 碳纤维 比表面积 电流密度 杂原子 化学工程 功率密度 电化学 储能 电极 纳米技术 复合材料 化学 有机化学 复合数 戒指(化学) 功率(物理) 催化作用 物理化学 工程类 物理 量子力学
作者
Kehan Zhao,Liang Zhao,Wei Zhou,L. Malleswara Rao,Saijun Wen,Yanhe Xiao,Baochang Cheng,Shuijin Lei
出处
期刊:Journal of energy storage [Elsevier]
卷期号:52: 104910-104910 被引量:29
标识
DOI:10.1016/j.est.2022.104910
摘要

Porous carbon materials derived from biomass shows great promise for applications in electrochemical energy storage, stimulating a great deal of research interest. For the sake of boosting the electrochemical performance of porous carbon materials, pore regulation is usually one of the most effective means, thus making it a highly attractive target for the exploration of advanced carbon materials. In this work, the well-defined multi-heteroatom co-doped carbon frameworks with honeycomb-like porous structure are successfully fabricated using Zizania latifolia as the precursor, showing high specific surface area together with three-dimensional hierarchical porosity. Interestingly, the pore structure of the carbon materials is facilely regulatable by tuning the concentration of soaking solution. Profiting from their unique pore structure and the efficient pore regulation, the as-produced carbon has great potential as the electrode material for supercapacitor application. The fabricated carbon-based electrode exhibits a large specific capacitance up to 376 F g−1 at 0.5 A g−1 current density, as well as a favorable cycling stability with 96.6% retention of the initial specific capacitance after 10,000 cycles at 20 A g−1 current density. Importantly, the corresponding symmetric supercapacitor device achieves a high energy density of 20.07 Wh kg−1 at a power density of 500 W kg−1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈颖完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
邵梁健完成签到,获得积分10
2秒前
2秒前
wanci应助细腻的青采纳,获得50
3秒前
3秒前
Zinia完成签到,获得积分10
4秒前
太渊完成签到 ,获得积分10
6秒前
Litchi完成签到 ,获得积分10
6秒前
沈颖发布了新的文献求助10
6秒前
南枳完成签到 ,获得积分10
7秒前
鲜艳的仙人掌完成签到,获得积分10
8秒前
科目三应助liugm采纳,获得10
8秒前
常青叶发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
籽儿完成签到,获得积分10
11秒前
11秒前
yzm完成签到,获得积分10
11秒前
Jason完成签到,获得积分20
11秒前
Zilong864完成签到,获得积分10
12秒前
12秒前
13秒前
HongMou完成签到,获得积分10
13秒前
aurevoir完成签到,获得积分10
13秒前
14秒前
志龙发布了新的文献求助10
14秒前
14秒前
15秒前
Luca发布了新的文献求助10
15秒前
Jason发布了新的文献求助10
15秒前
15秒前
ZZZ发布了新的文献求助10
15秒前
小明完成签到,获得积分10
16秒前
香蕉蕉完成签到,获得积分10
16秒前
16秒前
田様应助卢lsl采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243