Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries

电解质 材料科学 离子电导率 化学工程 锂(药物) 快离子导体 腐蚀 准固态 纳米技术 复合材料 化学 电极 内分泌学 工程类 物理化学 医学 色素敏化染料
作者
Ruoqian Lin,Yubin He,Chunyang Wang,Peichao Zou,Enyuan Hu,Xiao‐Qing Yang,Kang Xu,Huolin L. Xin
出处
期刊:Nature Nanotechnology [Nature Portfolio]
卷期号:17 (7): 768-776 被引量:143
标识
DOI:10.1038/s41565-022-01148-7
摘要

Solid-state lithium-metal (Li0) batteries are gaining traction for electric vehicle applications because they replace flammable liquid electrolytes with a safer, solid-form electrolyte that also offers higher energy density and better resistance against Li dendrite formation. Solid polymer electrolytes (SPEs) are highly promising candidates because of their tuneable mechanical properties and easy manufacturability; however, their electrochemical instability against lithium-metal (Li0), mediocre conductivity and poorly understood Li0/SPE interphases have prevented extensive application in real batteries. In particular, the origin of the low Coulombic efficiency (CE) associated with SPEs remains elusive, as the debate continues as to whether it originates from unfavoured interfacial reactions or lithium dendritic growth and dead lithium formation. In this work, we use state-of-the-art cryo-EM imaging and spectroscopic techniques to characterize the structure and chemistry of the interface between Li0 and a polyacrylate-based SPE. Contradicting the conventional knowledge, we find that no protective interphase forms, owing to the sustained reactions between deposited Li dendrites and polyacrylic backbones and succinonitrile plasticizer. Due to the reaction-induced volume change, large amounts of cracks form inside the Li dendrites with a stress–corrosion–cracking behaviour, indicating that Li0 cannot be passivated in this SPE system. On the basis of this observation, we then introduce additive engineering, leveraging from knowledge of liquid electrolytes, and demonstrate that the Li0 surface can be effectively protected against corrosion using fluoroethylene carbonate, leading to densely packed Li0 domes with conformal and stable solid–electrolyte interphase films. Owing to the high room-temperature ionic conductivity of 1.01 mS cm−1, the high transference number of 0.57 and the stabilized lithium–electrolyte interface, this improved SPE delivers an excellent lithium plating/stripping CE of 99% and 1,800 hours of stable cycling in Li||Li symmetric cells (0.2 mA cm−2, 1 mAh cm−2). This improved cathodic stability, along with the high anodic stability, enables a record high cycle life of >2,000 cycles for Li||LiFePO4 and >400 cycles for Li||LiCoO2 full cells. Li-metal surfaces can be effectively protected against corrosion using fluoroethylene carbonate, leading to a conformal and stable solid–electrolyte interphase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ZZ采纳,获得30
1秒前
2秒前
小可爱发布了新的文献求助10
5秒前
CodeCraft应助星星醒醒采纳,获得10
5秒前
李健应助long11采纳,获得10
7秒前
orixero应助greenbiloba采纳,获得10
8秒前
丘比特应助丁真先生采纳,获得10
8秒前
微风完成签到,获得积分10
9秒前
14秒前
16秒前
17秒前
lhzm8290发布了新的文献求助10
18秒前
小山隹发布了新的文献求助10
18秒前
科研通AI5应助有魅力冰岚采纳,获得30
19秒前
丁真先生发布了新的文献求助10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
猪猪hero应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
慕青应助lkf采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
江璃完成签到,获得积分10
24秒前
24秒前
24秒前
Akim应助土豪的飞荷采纳,获得10
26秒前
26秒前
失眠惊蛰完成签到,获得积分10
30秒前
32秒前
32秒前
33秒前
Sjingjia完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Illustrated Veterinary Anatomical Nomenclature 2000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770207
求助须知:如何正确求助?哪些是违规求助? 3315298
关于积分的说明 10175159
捐赠科研通 3030309
什么是DOI,文献DOI怎么找? 1662801
邀请新用户注册赠送积分活动 795099
科研通“疑难数据库(出版商)”最低求助积分说明 756560