A machine-learning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features

医学 甲状腺结节 不确定 放射科 超声波 接收机工作特性 细针穿刺 甲状腺 金标准(测试) 结核(地质) 人工智能 核医学 活检 计算机科学 内科学 生物 古生物学 纯数学 数学
作者
Xavier M. Keutgen,Hui Li,Kelvin Memeh,Julian Conn Busch,Jelani Williams,Lan Li,David Sarne,Brendan M. Finnerty,Peter Angelos,Thomas J. Fahey,Maryellen L. Giger
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:9 (03) 被引量:9
标识
DOI:10.1117/1.jmi.9.3.034501
摘要

Background: Ultrasound (US)-guided fine needle aspiration (FNA) cytology is the gold standard for the evaluation of thyroid nodules. However, up to 30% of FNA results are indeterminate, requiring further testing. In this study, we present a machine-learning analysis of indeterminate thyroid nodules on ultrasound with the aim to improve cancer diagnosis. Methods: Ultrasound images were collected from two institutions and labeled according to their FNA (F) and surgical pathology (S) diagnoses [malignant (M), benign (B), and indeterminate (I)]. Subgroup breakdown (FS) included: 90 BB, 83 IB, 70 MM, and 59 IM thyroid nodules. Margins of thyroid nodules were manually annotated, and computerized radiomic texture analysis was conducted within tumor contours. Initial investigation was conducted using five-fold cross-validation paradigm with a two-class Bayesian artificial neural networks classifier, including stepwise feature selection. Testing was conducted on an independent set and compared with a commercial molecular testing platform. Performance was evaluated using receiver operating characteristic analysis in the task of distinguishing between malignant and benign nodules. Results: About 1052 ultrasound images from 302 thyroid nodules were used for radiomic feature extraction and analysis. On the training/validation set comprising 263 nodules, five-fold cross-validation yielded area under curves (AUCs) of 0.75 [Standard Error (SE) = 0.04; P<0.001 ] and 0.67 (SE = 0.05; P=0.0012 ) for the classification tasks of MM versus BB, and IM versus IB, respectively. On an independent test set of 19 IM/IB cases, the algorithm for distinguishing indeterminate nodules yielded an AUC value of 0.88 (SE = 0.09; P<0.001 ), which was higher than the AUC of a commercially available molecular testing platform (AUC = 0.81, SE = 0.11; P<0.005 ). Conclusion: Machine learning of computer-extracted texture features on gray-scale ultrasound images showed promising results classifying indeterminate thyroid nodules according to their surgical pathology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tangli完成签到 ,获得积分10
刚刚
CipherSage应助宜菏采纳,获得10
2秒前
jason完成签到 ,获得积分10
2秒前
恋恋青葡萄完成签到,获得积分10
3秒前
6秒前
ho完成签到,获得积分10
9秒前
LingYun完成签到,获得积分10
11秒前
yznfly应助ho采纳,获得200
14秒前
栖梧砚客完成签到 ,获得积分10
15秒前
刘歌完成签到 ,获得积分10
15秒前
Mercury完成签到 ,获得积分10
16秒前
贾方硕完成签到,获得积分10
16秒前
888完成签到,获得积分10
20秒前
Lincoln完成签到,获得积分10
21秒前
HCLonely完成签到,获得积分0
24秒前
科研通AI2S应助Muncy采纳,获得20
28秒前
量子星尘发布了新的文献求助10
30秒前
独特的秋完成签到 ,获得积分10
30秒前
吉吉国王完成签到 ,获得积分10
31秒前
33秒前
13633501455完成签到 ,获得积分10
34秒前
哎呀哎呀呀完成签到,获得积分10
35秒前
科研助理发布了新的文献求助10
36秒前
你好纠结伦完成签到,获得积分10
36秒前
wll1091完成签到 ,获得积分10
38秒前
陈麦发布了新的文献求助10
38秒前
Joy完成签到,获得积分10
39秒前
默默平文完成签到,获得积分10
39秒前
40秒前
火蓝完成签到 ,获得积分10
41秒前
laber完成签到,获得积分0
43秒前
minrui发布了新的文献求助10
44秒前
阿苗完成签到 ,获得积分10
48秒前
cx完成签到,获得积分10
51秒前
yyani完成签到,获得积分10
53秒前
三脸茫然完成签到 ,获得积分0
53秒前
彦凝毓完成签到,获得积分10
55秒前
37星河75完成签到,获得积分10
56秒前
南山幼儿园一把手完成签到 ,获得积分10
1分钟前
懵懂的海露完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086