A machine-learning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features

医学 甲状腺结节 不确定 放射科 超声波 接收机工作特性 细针穿刺 甲状腺 金标准(测试) 结核(地质) 人工智能 核医学 活检 计算机科学 内科学 生物 古生物学 纯数学 数学
作者
Xavier M. Keutgen,Hui Li,Kelvin Memeh,Julian Conn Busch,Jelani Williams,Lan Li,David Sarne,Brendan M. Finnerty,Peter Angelos,Thomas J. Fahey,Maryellen L. Giger
出处
期刊:Journal of medical imaging [SPIE]
卷期号:9 (03) 被引量:9
标识
DOI:10.1117/1.jmi.9.3.034501
摘要

Background: Ultrasound (US)-guided fine needle aspiration (FNA) cytology is the gold standard for the evaluation of thyroid nodules. However, up to 30% of FNA results are indeterminate, requiring further testing. In this study, we present a machine-learning analysis of indeterminate thyroid nodules on ultrasound with the aim to improve cancer diagnosis. Methods: Ultrasound images were collected from two institutions and labeled according to their FNA (F) and surgical pathology (S) diagnoses [malignant (M), benign (B), and indeterminate (I)]. Subgroup breakdown (FS) included: 90 BB, 83 IB, 70 MM, and 59 IM thyroid nodules. Margins of thyroid nodules were manually annotated, and computerized radiomic texture analysis was conducted within tumor contours. Initial investigation was conducted using five-fold cross-validation paradigm with a two-class Bayesian artificial neural networks classifier, including stepwise feature selection. Testing was conducted on an independent set and compared with a commercial molecular testing platform. Performance was evaluated using receiver operating characteristic analysis in the task of distinguishing between malignant and benign nodules. Results: About 1052 ultrasound images from 302 thyroid nodules were used for radiomic feature extraction and analysis. On the training/validation set comprising 263 nodules, five-fold cross-validation yielded area under curves (AUCs) of 0.75 [Standard Error (SE) = 0.04; P<0.001 ] and 0.67 (SE = 0.05; P=0.0012 ) for the classification tasks of MM versus BB, and IM versus IB, respectively. On an independent test set of 19 IM/IB cases, the algorithm for distinguishing indeterminate nodules yielded an AUC value of 0.88 (SE = 0.09; P<0.001 ), which was higher than the AUC of a commercially available molecular testing platform (AUC = 0.81, SE = 0.11; P<0.005 ). Conclusion: Machine learning of computer-extracted texture features on gray-scale ultrasound images showed promising results classifying indeterminate thyroid nodules according to their surgical pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助清脆的书桃采纳,获得10
1秒前
SUMING完成签到 ,获得积分10
1秒前
1秒前
Ava应助冷傲天川采纳,获得10
1秒前
1秒前
元气马发布了新的文献求助10
2秒前
含蓄大雁发布了新的文献求助10
2秒前
笨笨凡之发布了新的文献求助50
2秒前
Rasay完成签到,获得积分10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助150
3秒前
3秒前
搜集达人应助务实忆秋采纳,获得30
3秒前
奋斗小松鼠完成签到 ,获得积分10
3秒前
3秒前
4秒前
将军完成签到,获得积分10
4秒前
4秒前
浮游应助不吃芝士采纳,获得10
5秒前
浪花发布了新的文献求助10
5秒前
5秒前
5秒前
alkdwx发布了新的文献求助10
5秒前
搜集达人应助112我的采纳,获得10
6秒前
6秒前
善学以致用应助一一一采纳,获得10
7秒前
清和发布了新的文献求助10
7秒前
Owen应助moeny85102采纳,获得10
8秒前
123456发布了新的文献求助20
8秒前
风清扬发布了新的文献求助10
8秒前
白色的猫猫完成签到,获得积分10
9秒前
xzg完成签到,获得积分10
9秒前
9秒前
天天快乐应助美少女战士采纳,获得10
9秒前
9秒前
smile发布了新的文献求助10
9秒前
9秒前
科研通AI5应助寒生采纳,获得30
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004977
求助须知:如何正确求助?哪些是违规求助? 4248789
关于积分的说明 13238374
捐赠科研通 4048287
什么是DOI,文献DOI怎么找? 2214827
邀请新用户注册赠送积分活动 1224695
关于科研通互助平台的介绍 1145141