A machine-learning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features

医学 甲状腺结节 不确定 放射科 超声波 接收机工作特性 细针穿刺 甲状腺 金标准(测试) 结核(地质) 人工智能 核医学 活检 计算机科学 内科学 生物 古生物学 纯数学 数学
作者
Xavier M. Keutgen,Hui Li,Kelvin Memeh,Julian Conn Busch,Jelani Williams,Lan Li,David Sarne,Brendan M. Finnerty,Peter Angelos,Thomas J. Fahey,Maryellen L. Giger
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:9 (03) 被引量:9
标识
DOI:10.1117/1.jmi.9.3.034501
摘要

Background: Ultrasound (US)-guided fine needle aspiration (FNA) cytology is the gold standard for the evaluation of thyroid nodules. However, up to 30% of FNA results are indeterminate, requiring further testing. In this study, we present a machine-learning analysis of indeterminate thyroid nodules on ultrasound with the aim to improve cancer diagnosis. Methods: Ultrasound images were collected from two institutions and labeled according to their FNA (F) and surgical pathology (S) diagnoses [malignant (M), benign (B), and indeterminate (I)]. Subgroup breakdown (FS) included: 90 BB, 83 IB, 70 MM, and 59 IM thyroid nodules. Margins of thyroid nodules were manually annotated, and computerized radiomic texture analysis was conducted within tumor contours. Initial investigation was conducted using five-fold cross-validation paradigm with a two-class Bayesian artificial neural networks classifier, including stepwise feature selection. Testing was conducted on an independent set and compared with a commercial molecular testing platform. Performance was evaluated using receiver operating characteristic analysis in the task of distinguishing between malignant and benign nodules. Results: About 1052 ultrasound images from 302 thyroid nodules were used for radiomic feature extraction and analysis. On the training/validation set comprising 263 nodules, five-fold cross-validation yielded area under curves (AUCs) of 0.75 [Standard Error (SE) = 0.04; P<0.001 ] and 0.67 (SE = 0.05; P=0.0012 ) for the classification tasks of MM versus BB, and IM versus IB, respectively. On an independent test set of 19 IM/IB cases, the algorithm for distinguishing indeterminate nodules yielded an AUC value of 0.88 (SE = 0.09; P<0.001 ), which was higher than the AUC of a commercially available molecular testing platform (AUC = 0.81, SE = 0.11; P<0.005 ). Conclusion: Machine learning of computer-extracted texture features on gray-scale ultrasound images showed promising results classifying indeterminate thyroid nodules according to their surgical pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助PANYIAO采纳,获得10
2秒前
hao完成签到,获得积分10
4秒前
4秒前
4秒前
逍遥猪皮完成签到,获得积分10
6秒前
可爱的函函应助eternity136采纳,获得10
9秒前
9秒前
xuyi完成签到,获得积分10
10秒前
李爱国应助。。。采纳,获得10
10秒前
12秒前
13秒前
酷波er应助JXY采纳,获得10
15秒前
礼拜天发布了新的文献求助10
16秒前
祈君完成签到 ,获得积分20
17秒前
yufanhui举报体贴的青烟求助涉嫌违规
17秒前
whisper完成签到,获得积分10
17秒前
daniel完成签到,获得积分10
17秒前
18秒前
Sience发布了新的文献求助10
18秒前
18秒前
gratitude发布了新的文献求助20
18秒前
hyx完成签到,获得积分20
19秒前
坚定天蓝发布了新的文献求助10
19秒前
20秒前
20秒前
passion完成签到 ,获得积分10
20秒前
23秒前
YKXYXB发布了新的文献求助10
23秒前
dichloro完成签到,获得积分10
24秒前
24秒前
调研昵称发布了新的文献求助10
25秒前
CAST1347完成签到,获得积分10
25秒前
26秒前
小米完成签到 ,获得积分10
26秒前
26秒前
小鱼完成签到,获得积分10
27秒前
Lili发布了新的文献求助10
28秒前
薛定谔的猫完成签到,获得积分10
28秒前
希望天下0贩的0应助TheQ采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839