光伏系统
储能
材料科学
纳米技术
太阳能
工艺工程
能量转换
计算机科学
电气工程
工程类
功率(物理)
量子力学
热力学
物理
作者
Ronghao Wang,Hong‐Min Liu,Yuhao Zhang,Kaiwen Sun,Weizhai Bao
出处
期刊:Small
[Wiley]
日期:2022-07-03
卷期号:18 (31)
被引量:13
标识
DOI:10.1002/smll.202203014
摘要
Abstract As an emerging solar energy utilization technology, solar redox batteries (SPRBs) combine the superior advantages of photoelectrochemical (PEC) devices and redox batteries and are considered as alternative candidates for large‐scale solar energy capture, conversion, and storage. In this review, a systematic summary from three aspects, including: dye sensitizers, PEC properties, and photoelectronic integrated systems, based on the characteristics of rechargeable batteries and the advantages of photovoltaic technology, is presented. The matching problem of high‐performance dye sensitizers, strategies to improve the performance of photoelectrode PEC, and the working mechanism and structure design of multienergy photoelectronic integrated devices are mainly introduced and analyzed. In particular, the devices and improvement strategies of high‐performance electrode materials are analyzed from the perspective of different photoelectronic integrated devices (liquid‐based and solid‐state‐based). Finally, future perspectives are provided for further improving the performance of SPRBs. This work will open up new prospects for the development of high‐efficiency photoelectronic integrated batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI