Tuning structural and electronic properties of recycled vanadium oxides via doping trace impurity for sustainable energy storage

杂质 浸出(土壤学) 兴奋剂 材料科学 电化学 储能 化学工程 阴极 纳米技术 冶金 电极 光电子学 化学 环境科学 土壤水分 功率(物理) 土壤科学 有机化学 物理化学 工程类 物理 量子力学
作者
Hailun Yang,Pengge Ning,Zewen Zhu,Ling Yuan,Wenting Jia,Jiawei Wen,Gaojie Xu,Ping Li,Hongbin Cao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:438: 135495-135495 被引量:7
标识
DOI:10.1016/j.cej.2022.135495
摘要

To meet the urgent requirement of sustainable energy storage technologies, it is essential to incorporate efficient waste management into designing energy storage materials. Herein, we report an environmentally responsible pathway to utilize the recycled V2O5 from V-Cr slag leaching solution. Because of the fact that trace Cr are existed in the recycled V2O5 from initial leaching solution. Therefore, the Cr-doped V2O5 with different content of Cr was successfully synthesized and the effect of Cr on the structure and electronic characteristics of V2O5 was systematically investigated. The date arising from spectral analyses informs us that the trace Cr doping can result in an expansion of the V2O5 lattice, and lead to the decreasing of the work function values, so aiding in enhancing the electrochemical performance. Owing to the trace Cr doped into V2O5 lattice, the recycled V2O5 shows a high specific capacity of 405.5 mAh g−1 and excellent cycling stability over 2000 cycles. A detailed electrochemical reaction mechanism of Cr-doped V2O5 cathode is investigated through a series of in-depth analyses. Different from conventional recycled strategy, we use the impurity element Cr, which is very difficult to separate from V, and realize the enhancement of the electrochemical performance of the recycled V2O5. Moreover, the practicability of recycled V2O5 is exemplified by fabricating a flexible, quasi-solid-state zinc batteries, and the cell operates well upon deformation. This work provides a new strategy for recycling wasted materials into high value materials for sustainable battery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yangyajie采纳,获得10
1秒前
casset发布了新的文献求助10
1秒前
外向电脑发布了新的文献求助10
1秒前
1秒前
whitedawn发布了新的文献求助10
1秒前
Red发布了新的文献求助10
1秒前
2秒前
2秒前
千城暮雪完成签到,获得积分10
3秒前
隐形曼青应助小飞采纳,获得10
3秒前
小蘑菇炖鸡仔完成签到 ,获得积分10
3秒前
aiqiangyu发布了新的文献求助10
3秒前
桐桐应助zhasmile采纳,获得10
3秒前
lou发布了新的文献求助10
3秒前
5秒前
5秒前
丘比特应助66不想读文献采纳,获得10
5秒前
宁2发布了新的文献求助30
5秒前
5秒前
5秒前
哈哈哈发布了新的文献求助10
6秒前
天真无招完成签到,获得积分10
6秒前
bkhvwhk发布了新的文献求助10
6秒前
桐桐应助JaneChen采纳,获得10
6秒前
quan12138发布了新的文献求助10
6秒前
英俊的铭应助可耐的香芦采纳,获得10
6秒前
副总关注了科研通微信公众号
6秒前
青花溅雨完成签到,获得积分10
6秒前
6秒前
casset完成签到,获得积分10
7秒前
kinn完成签到,获得积分10
7秒前
7秒前
九千七完成签到 ,获得积分10
7秒前
优雅的海蓝完成签到,获得积分10
7秒前
思源应助yoyoyo采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
所所应助bear采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399