化学
甲基乙二醛
尿
色谱法
紫杉醇
槲皮素
生物化学
抗氧化剂
酶
作者
Yiming Zhang,Lanlan Zhan,Quan Wen,Yulin Feng,Yun Luo,Ting Tan
标识
DOI:10.1021/acs.jafc.2c02189
摘要
Trapping of methylglyoxal (MGO), an important precursor of advanced glycation end products (AGEs), is considered an effective therapy for alleviating AGE-induced chronic metabolic diseases. In this paper, taxifolin (Tax) was first found to effectively trap MGO by forming mono- and di-MGO adducts under in vitro conditions. In addition, the mechanism of trapping MGO by Tax was also studied in vivo. Tax was demonstrated to efficiently trap endogenous MGO via formation of mono-MGO adducts in urine and fecal samples of C57BL/6J mice after oral administration of Tax and MGO. Mono-MGO adducts of Tax metabolites, including methylated Tax, aromadendrin, quercetin, and isorhamnetin, were identified in C57BL/6J mice urine and fecal samples by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). One mono-MGO-Tax was purified from the in vitro reaction mixture, and its structure was elucidated as 6-MGO-Tax based on the analysis of UHPLC-QTOF-MS/MS and detailed nuclear magnetic resonance (NMR) data. Quantification studies demonstrated that Tax and its metabolites trapped MGO in a dose-dependent manner in C57BL/6J mice urine and fecal samples. Furthermore, we also detected mono-MGO adducts of Tax and methylated Tax in urine and fecal samples of diabetic db/db mice after oral administration of Tax. Taken together, our results demonstrated that dietary Tax has the potential to detoxify MGO and treat AGE-associated chronic diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI